

晶采光電科技股份有限公司
AMPIRE CO., LTD.

SPECIFICATIONS FOR LCD MODULE

CUSTOMER	
CUSTOMER PART NO.	
AMPIRE PART NO.	AM-240320AJTZQW-00H
APPROVED BY	
DATE	

Approved For Specifications
Approved For Specifications & Sample

AMPIRE CO., LTD.
4F., No.116, Sec. 1, Xintai 5th Rd., Xizhi Dist., New Taipei City 221,
Taiwan (R.O.C.) 22181 新北市 汐止區新台五路一段 116 號 4F
TEL:886-2-26967269 , FAX:886-2-26967196 or 26967270

APPROVED BY	CHECKED BY	ORGANIZED BY

RECORD OF REVISION

Revision Date	Page	Contents	Editor
2019/09/06	--	New Release	Tank

1 Features

This display module is a color active matrix thin film transistor (TFT) liquid crystal display that uses amorphous silicon TFT as a switching device.

This TFT LCD panel has a 2.8 inch diagonally measured active display area with QVGA resolution (240 horizontal by 320 vertical pixels array).

(1) LCD: 1.1 Amorphous-TFT 2.8 inch display

1.2 240(RGB) X320 dots Matrix

1.3 LCD Driver IC: ILI9341V

(2) Compatible with ROHS Standard.

2. Mechanical specifications

Item	Specifications	unit
Display resolution(dot)	240(W) x 320(H)	dots
Active area	43.2 (W) x 57.6(H)	mm
Pixel pitch	0.18 (W) x 0.18 (H)	mm
Pixel Arrangement	R.G.B -stripe	-
Overall dimension	47.7 x 67.95 x 2.6	mm
Contrast ratio	800	-
Display Mode	Normally Black	-
Weight	16	g
Brightness	1000	Cd/m ²

3. Absolute max. ratings and environment

3.1 Absolute max. ratings

Item	Symbol	Min.	Max.	Unit.	Note
Power supply voltage	VCC	-0.3	4.6	V	GND=0
Logic Signal Input Level	V1	-0.3	VCC+0.3	V	

Item	Symbol	MIN.	TYP.	MAX.	Unit	Note
Forward voltage	Vf	--	6.4	7.0	V	(1)(2)(3)
Forward current	If	--	60		mA	(1)(2) (3)
Power Consumption	PBL	--	384		mW	

Note:

(1) Permanent damage may occur to the LCD module if beyond this specification.

Functional operation should be restricted to the conditions described under normal operating conditions.

(2) $T_a = 25 \pm 2^\circ\text{C}$

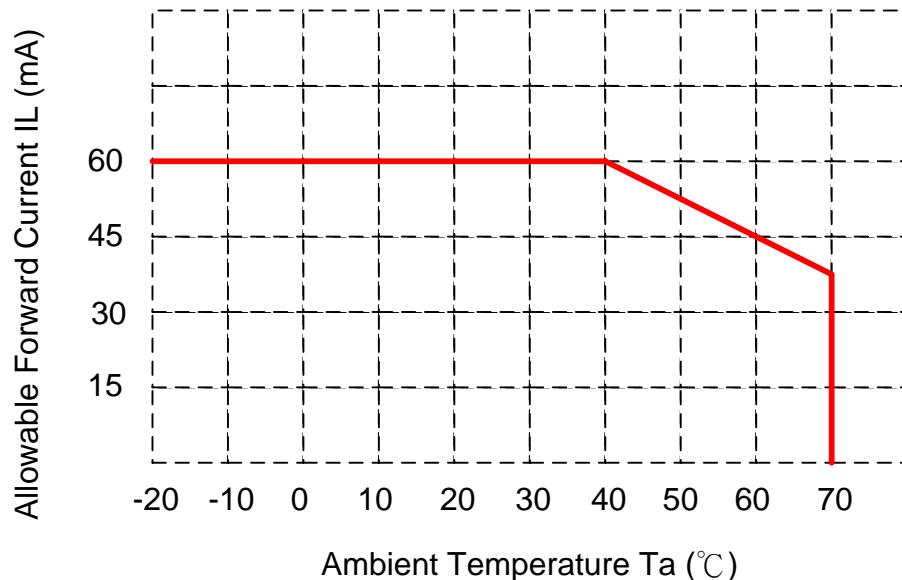
(3) Test Condition: LED current 60 mA

3.2 Environment Absolute Rating

Item	Symbol	Min.	Max.	Unit	Note
Operating Temperature	Top	-20	70	°C	
Storage Temperature	Tst	-30	80	°C	

4 Electrical specifications

4.1 Electrical characteristics of LCM


Item	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power voltage Digital	V _C C	-	3.0	3.3	3.6	V
Current of power supply	I _V CC		-	12.5	25	mA
High-level input voltage	V _I H	-	0.7* V _C C	-	V _C C	V
Low-level input voltage	V _I L	-	0	-	0.3* V _C C	V

4.2 LED back light specification

Item	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Forward voltage	V_f	$I_f = 60\text{mA}$	--	6.4	7.0	V
Forward current	I_f	6-chip 2Sx3P	--	60	--	mA
Uniformity (with L/G)	-	$I_f = 60\text{mA}$	70%*1	-	-	-
LED Life time	-	$I_f = 60\text{mA}$	30000	50000	-	Hr
Luminous color			White			
Chip connection			6 chip / 2 Serial x 3 Parallel connection			

Note (1) LED life time (Hr) can be defined as the time in which it continues to operate under the condition: $T_a = 25 \pm 3 \text{ }^{\circ}\text{C}$, typical IL value indicated in the above table until the brightness becomes less than 50%.

Note (2) The “LED life time” is defined as the module brightness decrease to 50% original brightness at $T_a = 25 \text{ }^{\circ}\text{C}$ and $IL = 60\text{mA}$. The LED lifetime could be decreased if operating IL is larger than 80mA. The constant current driving method is suggested.

5 Optical characteristics

Optical characteristics

Item	Symbol	Conditions	Min	Typ	Max	Unit	Note
Contrast Ratio	CR	Viewing normal angle $\Theta_x = \Theta_y = 0$	600	800	-	-	
Response Time	T_{R+F}		-	20	40	ms	(4)
Viewing Angle	Top	$CR \geq 10$	75	80	-	deg	(2)
	Bottom		75	80	-		
	Left		75	80	-		
	Right		75	80	-		
Module Chromaticity	Red	Viewing normal angle $\Theta_x = \Theta_y = 0$	Typ-0 .05	0.626	Typ+ 0.05	-	-
				0.334			
	Green			0.277			
				0.549			
	Blue			0.142			
				0.122			
	White			0.303			
				0.325			
Brightness	-	IL=60mA	800	1000	-	Cd/m ²	(1)

Note (1) Measurement Setup:

The LCD module should be stabilized at given temperature(25°C) for 15 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 15 minutes in a windless room.

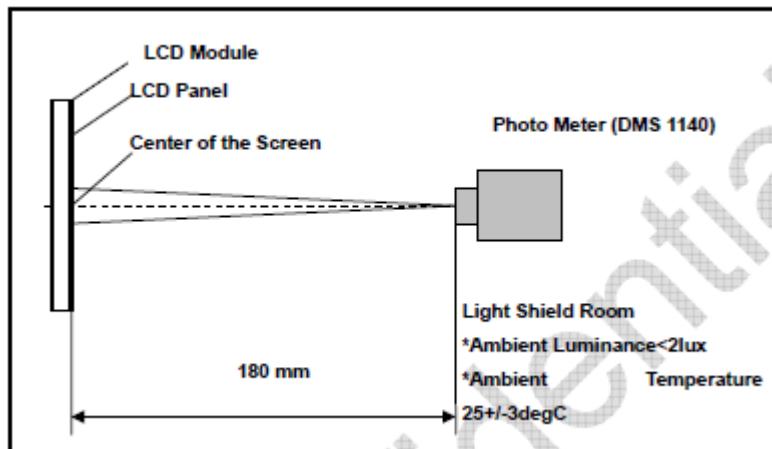


Figure 2 Measurement Setup

Note (2) Definition of Viewing Angle

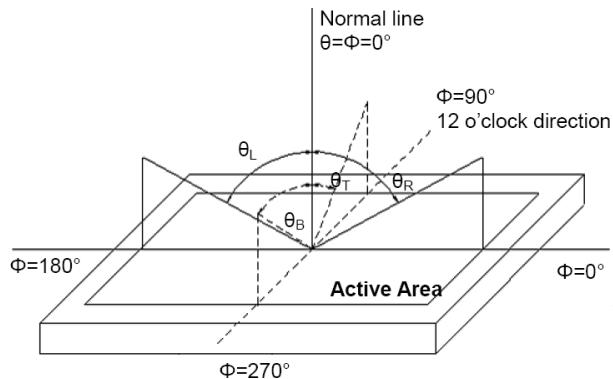


Figure 3 Definition of Viewing Angle

Note (3) Definition Of Contrast Ratio (CR)

The contrast ratio can be calculated by the following expression

$$\text{Contrast Ratio (CR)} = L_{63} / L_0$$

L63: Luminance of gray level 63, L0: Luminance of gray level 0

Note (4) Definition Of Response Time

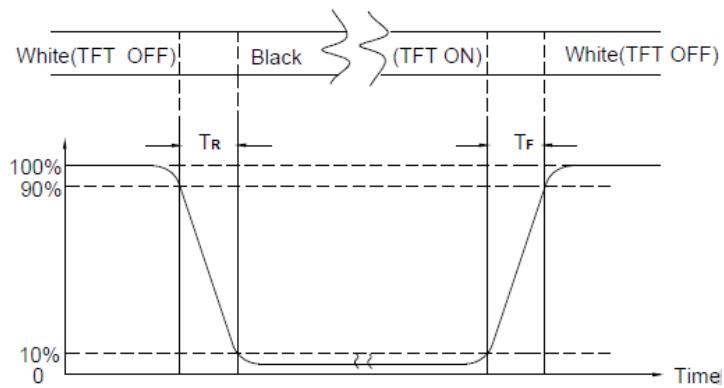


Figure 4 Definition of Response Time

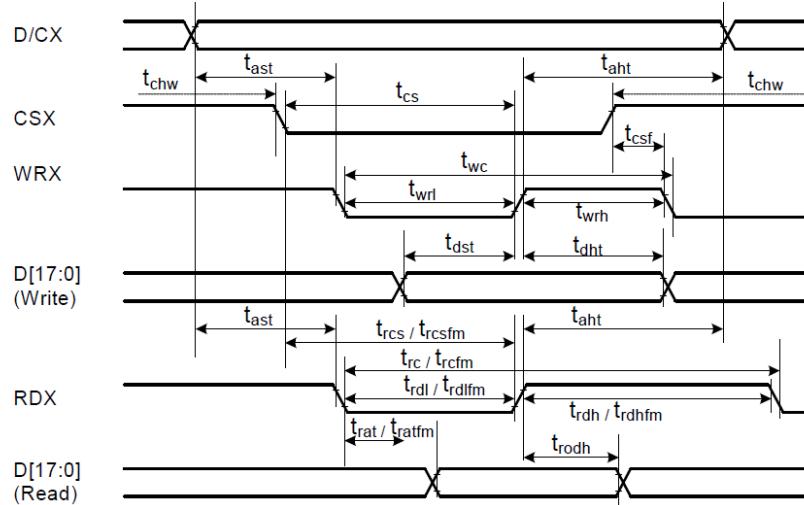
6. Electrical Specifications

6.1 TFT LCD Panel FPC Descriptions

No.	Symbol	I/O	Description
1	LED_A	P	Backlight LED Anode.
2	LED_K1	P	Backlight LED Cathode.
3	NC	-	No connection.
4	NC	-	No connection.
5	NC	-	No connection.
6	IM0	I	Interface mode selected pin (Note 4)
7	IM1	I	
8	IM2	I	
9	IM3	I	
10	FMARK		Test Pad. If not used, open this pin.
11	VSYNC	I	-Vertical (Frame) synchronizing input signal for RGB interface operation. -If not used, please fix to the VCC or GND.
12	HSYNC	I	-Horizontal (Line) synchronizing input signal for RGB interface operation. -If not used, please fix this pin at VCC or GND.
13	DOTCLK	I	-Dot clock signal for RGB interface operation. -If not used, please fix this pin at VCC or GND.
14	ENABLE	I	-Data enable signal for RGB interface operation. -If not used, please fix this pin at VCC or GND.
15	DB17	I	Data input
16	DB16	I	Data input
17	DB15	I	Data input
18	DB14	I	Data input
19	DB13	I	Data input
20	DB12	I	Data input
21	DB11	I	Data input
22	DB10	I	Data input
23	DB9	I	Data input
24	DB8	I	Data input
25	DB7	I	Data input
26	DB6	I	Data input
27	DB5	I	Data input
28	DB4	I	Data input
29	DB3	I	Data input
30	DB2	I	Data input
31	DB1	I	Data input

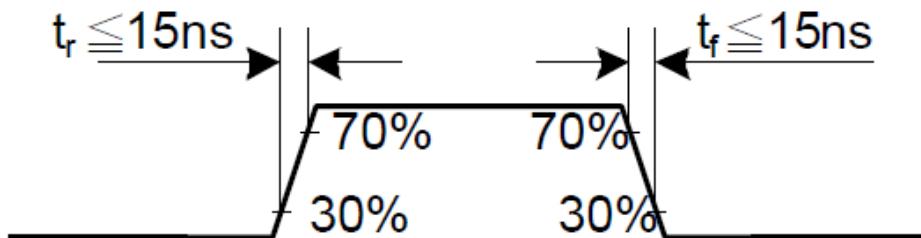
No.	Symbol	I/O	Description
32	DB0	I	Data input
33	CS	I	Chip selection pin
34	WR	I	(WRX) - 8080- I /8080- II system: Serves as a write signal and writes data at the rising edge. (D/CX) - 4-line system: Serves as the selector of command or parameter. Fix to VCC level when not in use.
35	RS/SCL	I	(D/CX): This pin is used to select "Data or Command" in the parallel interface. When DCX = 1, data is selected. When DCX = 0, command is selected. (SCL): This pin is used as the serial interface clock in 3-wire 9-bit/4-wire 8-bit serial data interface. If not used, this pin should be connected to VCC or GND.
36	RD	I	8080- I /8080- II system (RDX): Serves as a read signal and MCU read data at the rising edge. Fix to VCC level when not in use.
37	RESET	I	This signal will reset the device and must be applied to properly initialize the chip. Signal is active low.
38	SDO	I	Serial output signal. The data is outputted on the falling edge of the SCL signal. If not used, open this pin
39	SDI	I	When IM[3] : Low, Serial in/out signal. When IM[3] : High, Serial input signal. The data is applied on the rising edge of the SCL signal. If not used, fix this pin at VCC or GND.
40	VCC	P	Power Supply voltage
41	GND	P	Power Ground
42	YD(NC)	-	No connection.
43	XR(NC)	-	No connection.
44	YU(NC)	-	No connection.
45	XL(NC)	-	No connection.

Note (1): HSYNC, VSYNC, DE, Digital Data

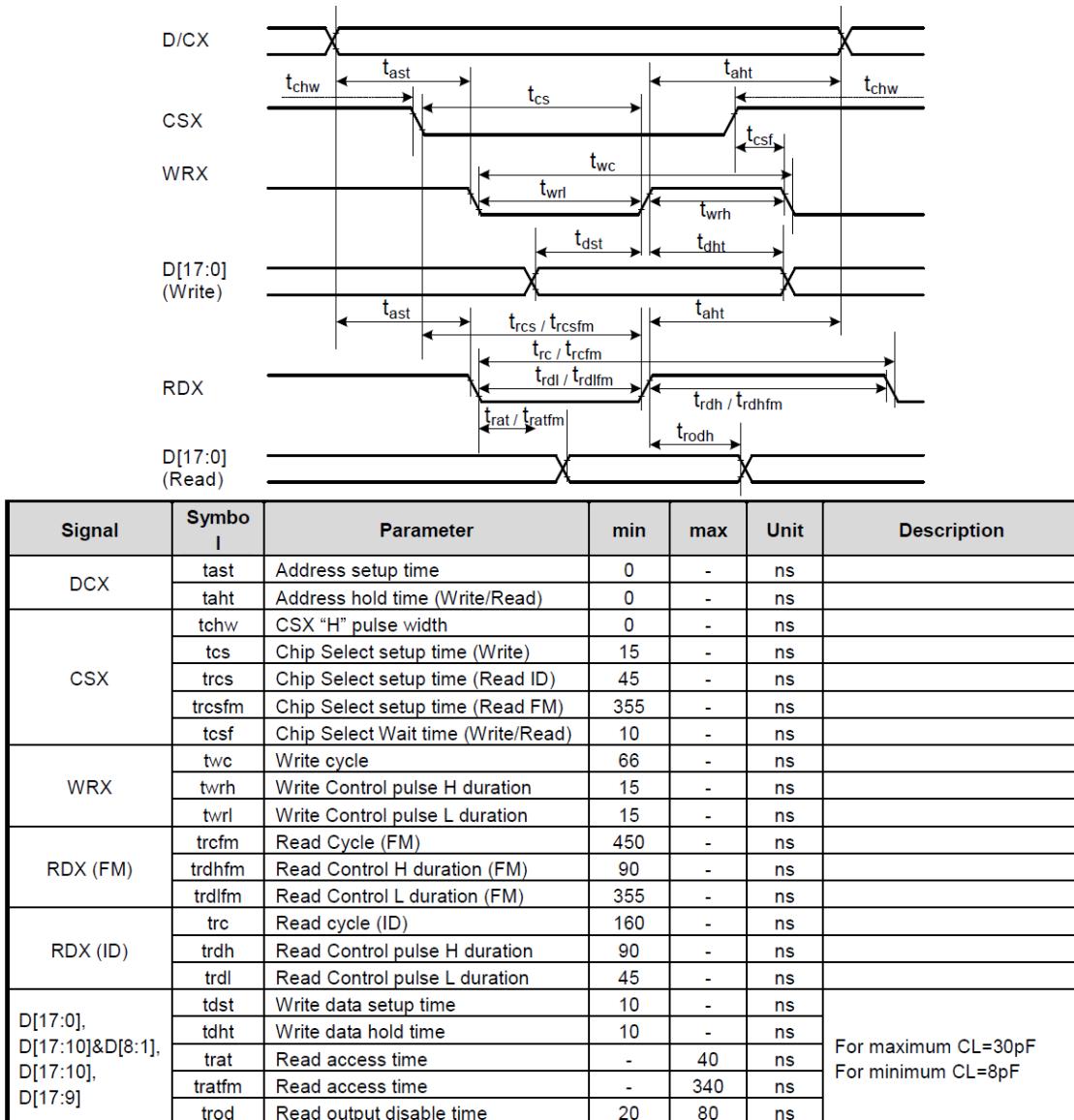

Note (2): Be sure to apply the power voltage as the power sequence spec.

Note (3):

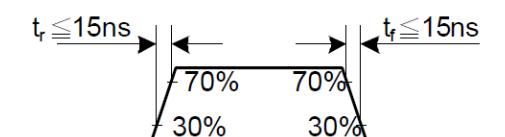
IM3	IM2	IM1	IM0	MCU-Interface Mode	Pins in use	
					Register/Content	GRAM
0	0	0	0	8080 MCU 8-bit bus interface I	D[7:0]	D[7:0],WRX,RDX,CSX,D/CX
0	0	0	1	8080 MCU 16-bit bus interface I	D[7:0]	D[15:0],WRX,RDX,CSX,D/CX
0	0	1	0	8080 MCU 9-bit bus interface I	D[7:0]	D[8:0],WRX,RDX,CSX,D/CX
0	0	1	1	8080 MCU 18-bit bus interface I	D[7:0]	D[17:0],WRX,RDX,CSX,D/CX
0	1	0	1	3-wire 9-bit data serial interface I		SCL,SDA,CSX
0	1	1	0	4-wire 8-bit data serial interface I		SCL,SDA,D/CX,CSX
1	0	0	0	8080 MCU 16-bit bus interface II	D[8:1]	D[17:10],D[8:1],WRX,RDX,CSX,D/CX
1	0	0	1	8080 MCU 8-bit bus interface II	D[17:10]	D[17:10],WRX,RDX,CSX,D/CX
1	0	1	0	8080 MCU 18-bit bus interface II	D[8:1]	D[17:0],WRX,RDX,CSX,D/CX
1	0	1	1	8080 MCU 9-bit bus interface II	D[17:10]	D[17:9],WRX,RDX,CSX,D/CX
1	1	0	1	3-wire 9-bit data serial interface II		SCL,SDI,SDO, CSX
1	1	1	0	4-wire 8-bit data serial interface II		SCL,SDI,D/CX,SDO, CSX

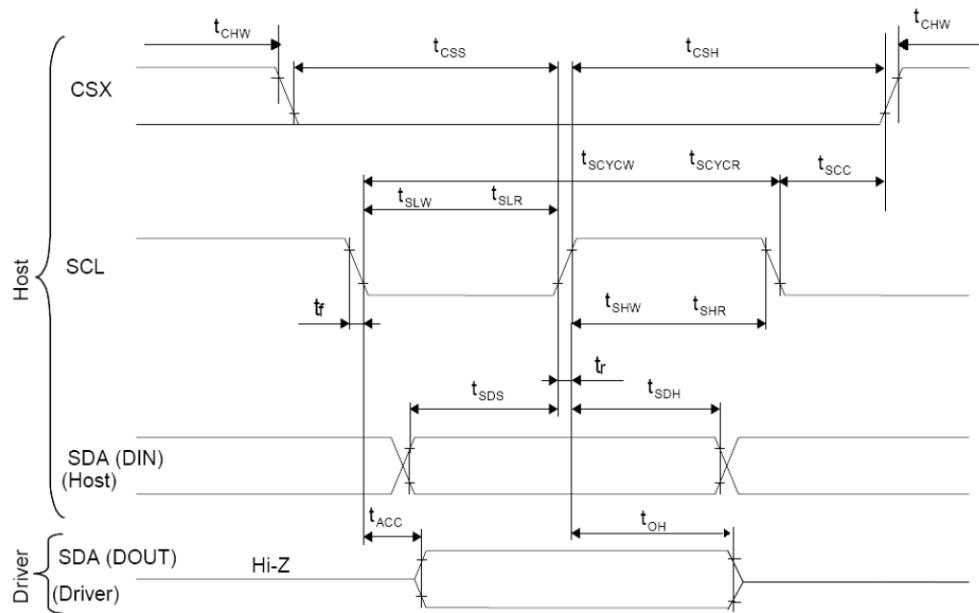

7 AC Characteristics

7.1 Parallel 18/16/9/8-bit Timing (8080-I system)

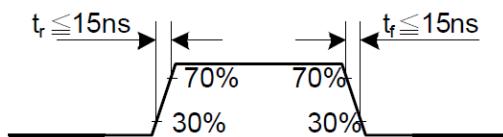


Signal	Symbol	Parameter	min	max	Unit	Description
DCX	tast	Address setup time	0	-	ns	
	taht	Address hold time (Write/Read)	0	-	ns	
CSX	tch	CSX "H" pulse width	0	-	ns	
	tcs	Chip Select setup time (Write)	15	-	ns	
	trcs	Chip Select setup time (Read ID)	45	-	ns	
	trcsfm	Chip Select setup time (Read FM)	355	-	ns	
	tcsf	Chip Select Wait time (Write/Read)	10	-	ns	
WRX	twc	Write cycle	66	-	ns	
	twrh	Write Control pulse H duration	15	-	ns	
	twrl	Write Control pulse L duration	15	-	ns	
RDX (FM)	trcfm	Read Cycle (FM)	450	-	ns	
	trdhfm	Read Control H duration (FM)	90	-	ns	
	trdlfm	Read Control L duration (FM)	355	-	ns	
RDX (ID)	trc	Read cycle (ID)	160	-	ns	
	trdh	Read Control pulse H duration	90	-	ns	
	trdl	Read Control pulse L duration	45	-	ns	
D[17:0], D[15:0], D[8:0], D[7:0]	tdst	Write data setup time	10	-	ns	For maximum CL=30pF For minimum CL=8pF
	tdht	Write data hold time	10	-	ns	
	trat	Read access time	-	40	ns	
	tratf	Read access time	-	340	ns	
	trod	Read output disable time	20	80	ns	

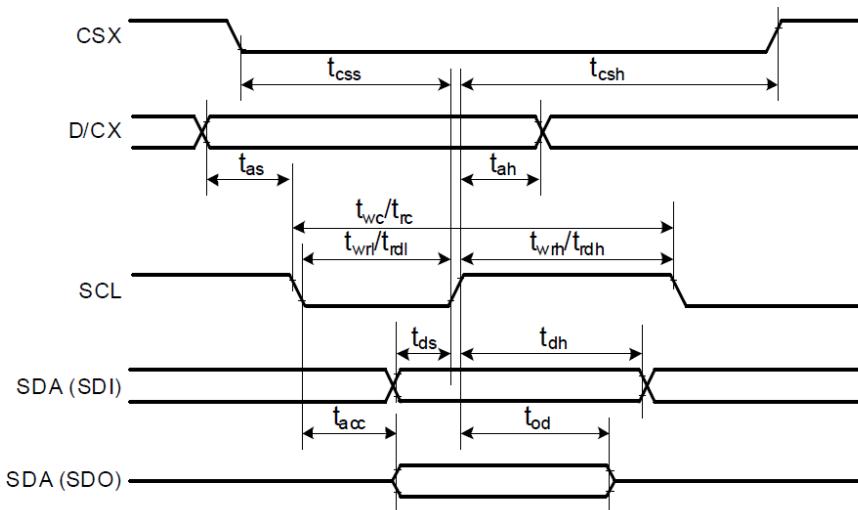

Note: VCC=2.5 to 3.3V, GND=0V


7.2 Display Parallel 18/16/9/8-bit Interface Timing Characteristics(8080-II system)

Note: $T_a = -30$ to 70 °C, $VDD=1.65V$ to $3.3V$, $VCI=2.5V$ to $3.3V$, $VSS=0V$.

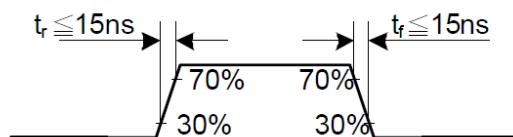


7.3 Display Serial Interface Timing Characteristics (3-line SPI system)

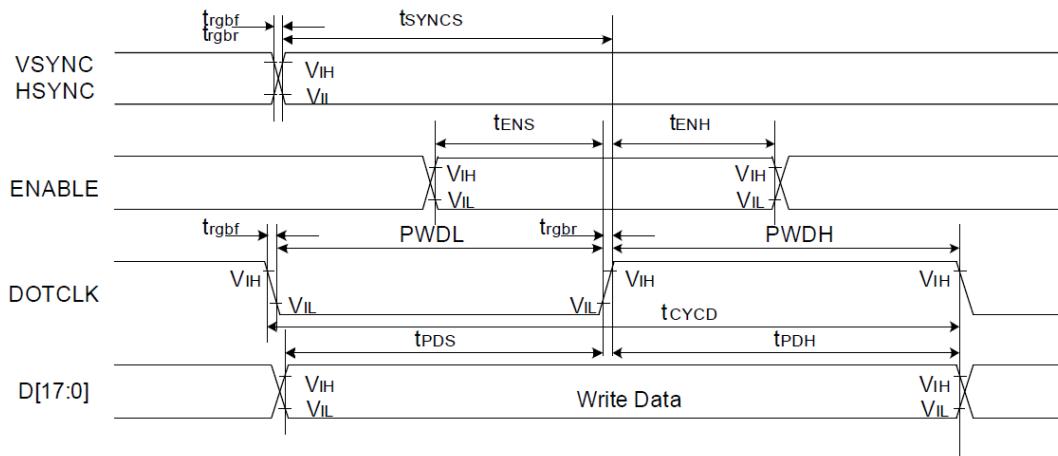


Signal	Symbol	Parameter	min	max	Unit	Description
SCL	tscycw	Serial Clock Cycle (Write)	100	-	ns	
	tshw	SCL "H" Pulse Width (Write)	40	-	ns	
	tslw	SCL "L" Pulse Width (Write)	40	-	ns	
	tscycr	Serial Clock Cycle (Read)	150	-	ns	
	tshr	SCL "H" Pulse Width (Read)	60	-	ns	
	tslr	SCL "L" Pulse Width (Read)	60	-	ns	
SDA / SDI (Input)	tsds	Data setup time (Write)	30	-	ns	
SDA / SDO (Output)	tsdh	Data hold time (Write)	30	-	ns	
CSX	tacc	Access time (Read)	10	-	ns	
	toh	Output disable time (Read)	10	50	ns	
	tscc	SCL-CSX	20	-	ns	
	tchw	CSX "H" Pulse Width	40	-	ns	
tcss	CSX-SCL Time		60	-	ns	
	tcsh		65	-	ns	

Note: $T_a = 25^\circ\text{C}$, $VDDI=1.65\text{V}$ to 3.3V , $VCL=2.5\text{V}$ to 3.3V , $AGND=VSS=0\text{V}$

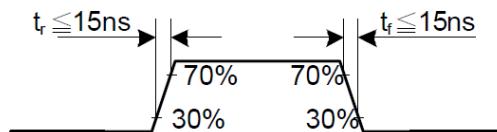


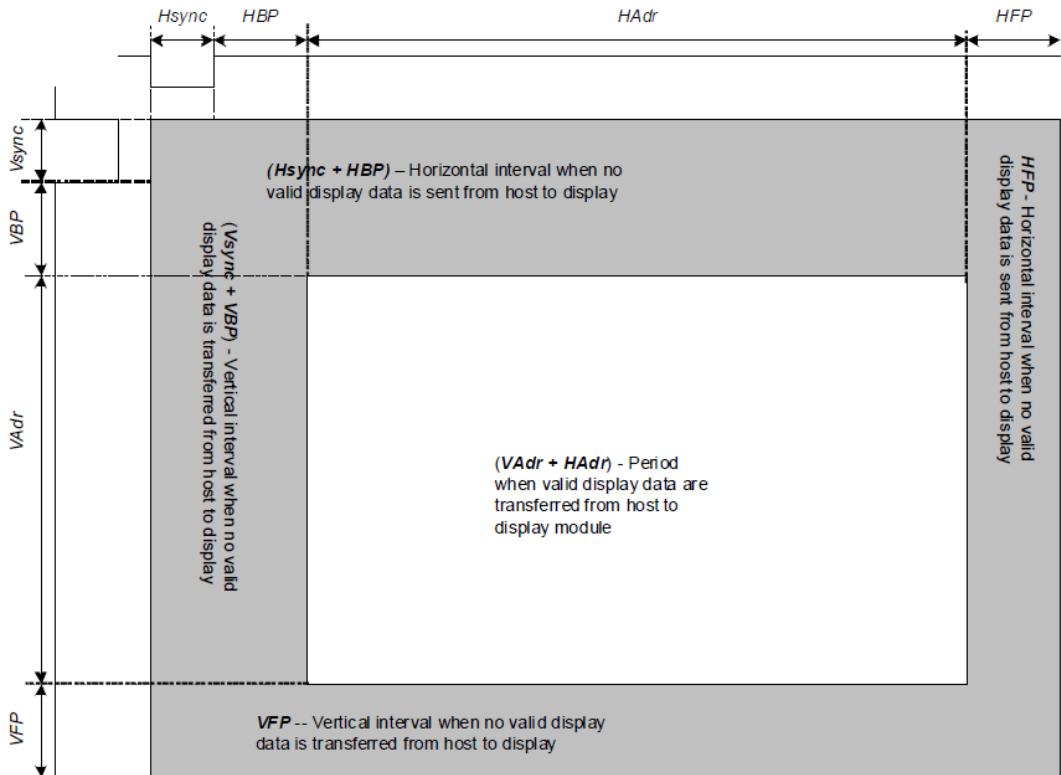
7.4 Display Serial Interface Timing Characteristics (4-line SPI system)



Signal	Symbol	Parameter	min	max	Unit	Description
CSX	tcss	Chip select time (Write)	40	-	ns	
	tcsh	Chip select hold time (Read)	40	-	ns	
SCL	t _{wc}	Serial clock cycle (Write)	100	-	ns	
	t _{wrh}	SCL "H" pulse width (Write)	40	-	ns	
	t _{wrl}	SCL "L" pulse width (Write)	40	-	ns	
	t _{rc}	Serial clock cycle (Read)	150	-	ns	
	t _{rdh}	SCL "H" pulse width (Read)	60	-	ns	
	t _{rdl}	SCL "L" pulse width (Read)	60	-	ns	
D/CX	tas	D/CX setup time	10	-		
	tah	D/CX hold time (Write / Read)	10	-		
SDA / SDI (Input)	t _{ds}	Data setup time (Write)	30	-	ns	
	t _{dh}	Data hold time (Write)	30	-	ns	
SDA / SDO (Output)	t _{acc}	Access time (Read)	10	-	ns	For maximum CL=30pF
	t _{od}	Output disable time (Read)	10	50	ns	For minimum CL=8pF

Note: $T_a = 25^\circ C$, $VDD=1.65V$ to $3.3V$, $VCI=2.5V$ to $3.3V$, $AGND=VSS=0V$




7.5 Parallel 18/16/6-bit RGB Interface Timing Characteristics

Signal	Symbol	Parameter	min	max	Unit	Description
VSYNC / HSYNC	t _{SYNCS}	VSYNC/HSYNC setup time	15	-	ns	18/16-bit bus RGB interface mode
	t _{SYNCH}	VSYNC/HSYNC hold time	15	-	ns	
DE	t _{EENS}	DE setup time	15	-	ns	
	t _{EENH}	DE hold time	15	-	ns	
D[17:0]	t _{POS}	Data setup time	15	-	ns	
	t _{PDH}	Data hold time	15	-	ns	
DOTCLK	PWDH	DOTCLK high-level period	15	-	ns	
	PWDL	DOTCLK low-level period	15	-	ns	
	t _{CYCD}	DOTCLK cycle time	100	-	ns	
	t _{RQBF} , t _{RQBF}	DOTCLK,HSYNC,VSYNC rise/fall time	-	15	ns	
VSYNC / HSYNC	t _{SYNCS}	VSYNC/HSYNC setup time	15	-	ns	6-bit bus RGB interface mode
	t _{SYNCH}	VSYNC/HSYNC hold time	15	-	ns	
DE	t _{EENS}	DE setup time	15	-	ns	
	t _{EENH}	DE hold time	15	-	ns	
D[17:0]	t _{POS}	Data setup time	15	-	ns	
	t _{PDH}	Data hold time	15	-	ns	
DOTCLK	PWDH	DOTCLK high-level pulse period	15	-	ns	
	PWDL	DOTCLK low-level pulse period	15	-	ns	
	t _{CYCD}	DOTCLK cycle time	50	-	ns	
	t _{RQBF} , t _{RQBF}	DOTCLK,HSYNC,VSYNC rise/fall time	-	15	ns	

Note: Ta = -30 to 70 °C, VDD=1.65V to 3.3V, VCI=2.5V to 3.3V, AGND=VSS=0V

Parameters	Symbols	Condition	Min.	Typ.	Max.	Units
Horizontal Synchronization	Hsync		2	10	16	DOTCLK
Horizontal Back Porch	HBP		2	20	24	DOTCLK
Horizontal Address	HAdr		-	240	-	DOTCLK
Horizontal Front Porch	HFP		2	10	16	DOTCLK
Vertical Synchronization	Vsync		1	2	4	Line
Vertical Back Porch	VBP		1	2	-	Line
Vertical Address	VAdr		-	320	-	Line
Vertical Front Porch	VFP		3	4	-	Line

8 RELIABILITY

Test Item	Test Conditions	Note
High Temperature Operation	70±3°C , t=240 hrs	
Low Temperature Operation	-20±3°C , t=240 hrs	
High Temperature Storage	80±3°C , t=240 hrs	1,2
Low Temperature Storage	-30±3°C , t=240 hrs	1,2
Storage at High Temperature and Humidity	60°C, 90% RH , 240 hrs	1,2
Thermal Shock Test	-30°C (30min) ~ 80°C (30min) 200 cycles	1,2
Vibration Test (Packing)	Sweep frequency : 10 ~ 55 ~ 10 Hz/1min Amplitude : 0.75mm Test direction : X.Y.Z/3 axis Duration : 30min/each axis	2

Note(1) Condensation of water is not permitted on the module.

Note(2) The module should be inspected after 1 hour storage in normal conditions (15-35°C, 45-65%RH).

Note(3) The module shouldn't be tested over one condition, and all the tests are independent.

Note(4) All reliability tests should be done without the protective film.

Definitions of life end point:

- Current drain should be smaller than the specific value.
- Function of the module should be maintained.
- Appearance and display quality should not have degraded noticeably.
- Contrast ratio should be greater than 50% of the initial value.

9 USE PRECAUTIONS

9.1 Handling precautions

- 1) The polarizing plate may break easily so be careful when handling it. Do not touch, press or rub it with a hard-material tool like tweezers.
- 2) Do not touch the polarizing plate surface with bare hands so as not to make it dirty. If the surface or other related part of the polarizing plate is dirty, soak a soft cotton cloth or chamois leather in benzine and wipe off with it. Do not use chemical liquids such as acetone, toluene and isopropyl alcohol. Failure to do so may bring chemical reaction phenomena and deteriorations.
- 3) Remove any spit or water immediately. If it is left for hours, the suffered part may deform or decolorize.
- 4) If the LCD element breaks and any LC stuff leaks, do not suck or lick it. Also if LC stuff is stuck on your skin or clothing, wash thoroughly with soap and water immediately.

9.2 Installing precautions

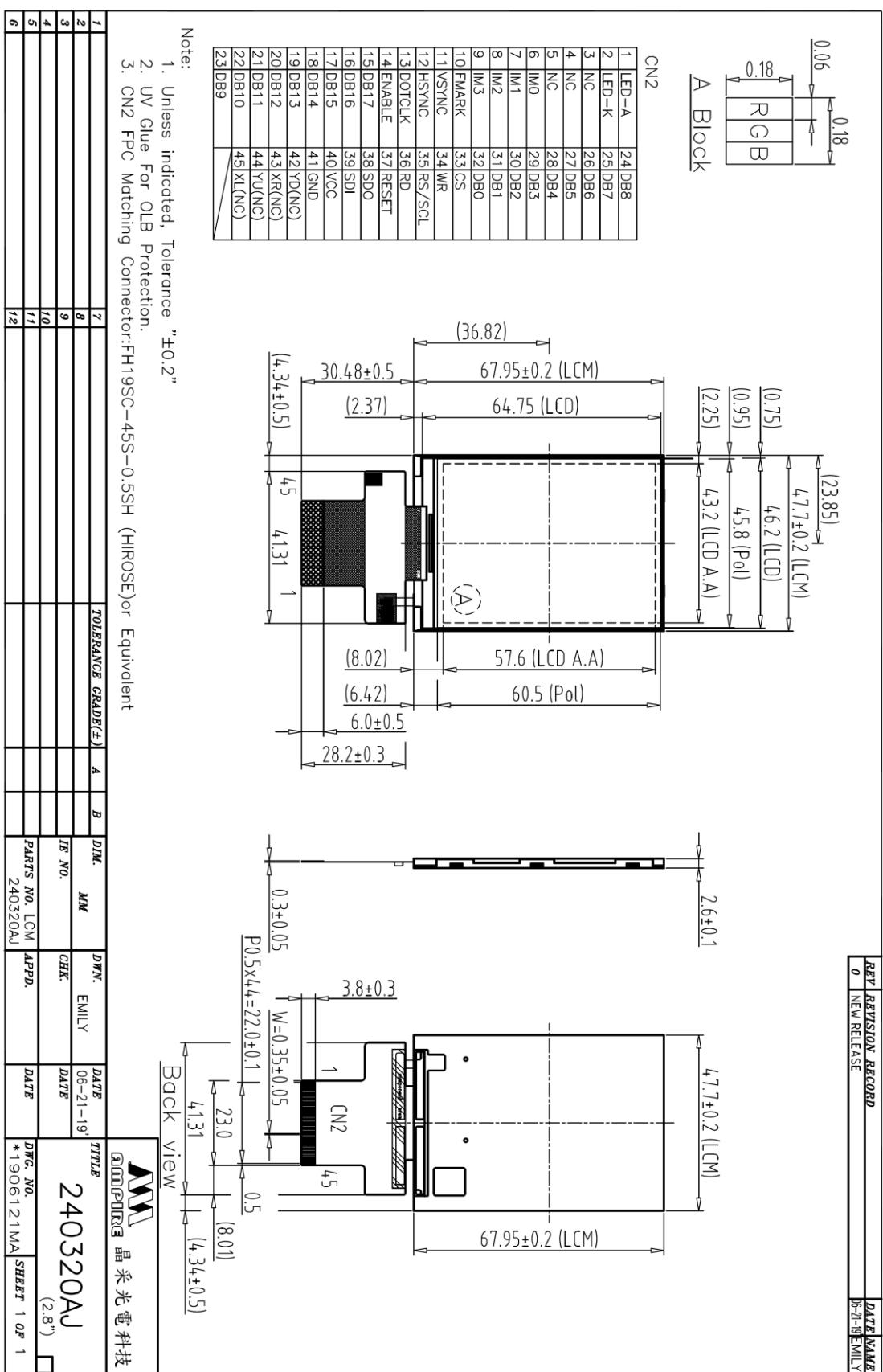
- 1) The PCB has many ICs that may be damaged easily by static electricity. To prevent breaking by static electricity from the human body and clothing, earth the human body properly using the high resistance and discharge static electricity during the operation. In this case, however, the resistance value should be approx. $1M\Omega$ and the resistance should be placed near the human body rather than the ground surface. When the indoor space is dry, static electricity may occur easily so be careful. We recommend the indoor space should be kept with humidity of 60% or more. When a soldering iron or other similar tool is used for assembly, be sure to earth it.
- 2) When installing the module and ICs, do not bend or twist them. Failure to do so may crack LC element and cause circuit failure.
- 3) To protect LC element, especially polarizing plate, use a transparent protective plate (e.g., acrylic plate, glass etc) for the product case.
- 4) Do not use an adhesive like a both-side adhesive tape to make LCD surface (polarizing plate) and product case stick together. Failure to do so may cause the polarizing plate to peel off.

9.3 Storage precautions

- 1) Avoid a high temperature and humidity area. Keep the temperature between 0°C and 35°C and also the humidity under 60%.
- 2) Choose the dark spaces where the product is not exposed to direct sunlight or fluorescent light.
- 3) Store the products as they are put in the boxes provided from us or in the same conditions as we recommend.

9.4 Operating precautions

- 1) Do not boost the applied drive voltage abnormally. Failure to do so may break ICs. When applying power voltage, check the electrical features beforehand and be careful. Always turn off the power to the LC module controller before removing or inserting the LC module input connector. If the input connector is removed or inserted while the power is turned on, the LC module internal circuit may break.
- 2) The display response may be late if the operating temperature is under the normal standard, and the display may be out of order if it is above the normal standard. But this is not a failure; this will be restored if it is within the normal standard.
- 3) The LCD contrast varies depending on the visual angle, ambient temperature, power voltage etc. Obtain the optimum contrast by adjusting the LC drive voltage.
- 4) When carrying out the test, do not take the module out of the low-temperature space suddenly. Failure to do so will cause the module condensing, leading to malfunctions.
- 5) Make certain that each signal noise level is within the standard (L level: 0.2Vdd or less and H level: 0.8Vdd or more) even if the module has functioned properly. If it is beyond the standard, the module may often malfunction. In addition, always connect the module when making noise level measurements.
- 6) The CMOS ICs are incorporated in the module and the pull-up and pull-down function is not adopted for the input so avoid putting the input signal open while the power is ON.
- 7) The characteristic of the semiconductor element changes when it is exposed to light emissions, therefore ICs on the LCD may malfunction if they receive light emissions. To prevent these malfunctions, design and assemble ICs so that


they are shielded from light emissions.

8) Crosstalk occurs because of characteristics of the LCD. In general, crosstalk occurs when the regularized display is maintained. Also, crosstalk is affected by the LC drive voltage. Design the contents of the display, considering crosstalk.

9.5 Other

- 1) Do not disassemble or take the LC module into pieces. The LC modules once disassembled or taken into pieces are not the guarantee articles.
- 2) Do not keep the LCD at the same display pattern continually. The residual image will happen and it will damage the LCD. Please use screen saver.
- 3) AMIPRE will provide one year warranty for all products and three months warranty for all repairing products.

10 MECHANIC DRAWING

