

## SPECIFICATIONS FOR LCD MODULE

|                          |                         |
|--------------------------|-------------------------|
| <b>CUSTOMER</b>          |                         |
| <b>CUSTOMER PART NO.</b> |                         |
| <b>AMPIRE PART NO.</b>   | AMA-156A04-DUC2510-G020 |
| <b>APPROVED BY</b>       |                         |
| <b>DATE</b>              |                         |

Preliminary Specification

Formal Specification

**AMPIRE CO., LTD.**

**4F., No.116, Sec. 1, Xintai 5th Rd., Xizhi Dist., New Taipei  
City221, Taiwan (R.O.C.)**

新北市汐止區新台五路一段 116 號 4 樓(東方科學園區 A 棟)

**TEL:886-2-26967269 , FAX:886-2-26967196 or 26967270**

| APPROVED BY | CHECKED BY | ORGANIZED BY |
|-------------|------------|--------------|
| Patrick     | Lawlite    | Kokai        |

This Specification is subject to change without notice.

## RECORD OF REVISION

| Revision Date | Page  | Contents                         | Editor |
|---------------|-------|----------------------------------|--------|
| 2023/8/21     | --    | New Release                      | Kokai  |
| 2023/10/23    | 8     | Update LED connector & interface | Tank   |
|               | 20,21 | Update drawing                   |        |

## 1. Features

15.6 inch Amorphous-TFT-LCD (Thin Film Transistor Liquid Crystal Display) module. This module is composed of a 15.6" TFT-LCD panel and LED backlight and LED driving board.

- (1) Construction: 15.6" a-Si TFT active matrix, White LED Backlight.
- (2) Resolution (pixel): 1920(R.G.B) X 1080
- (3) Number of the Colors : 16.7M colors ( R , G , B 8 bit digital each)
- (4) LCD type :IPS with Normally Black
- (5) Touch panel

## PHYSICAL SPECIFICATIONS

| Item              | Specifications                   | unit              |
|-------------------|----------------------------------|-------------------|
| LCD size          | 15.6 inch (Diagonal)             |                   |
| Resolution        | 1920 x (RGB) x 1080              | dot               |
| Pixel Pitch       | 0.17925 (H) X 0.17925 (V)        | mm                |
| Active area       | 344.16(W) x 193.59(H)            | mm                |
| Module size       | 392.23(W) x 241.54(H) x 14.17(D) | mm                |
| Color arrangement | RGB-stripe                       |                   |
| Contrast Ratio    | 1000:1                           |                   |
| Brightness        | 850                              | cd/m <sup>2</sup> |

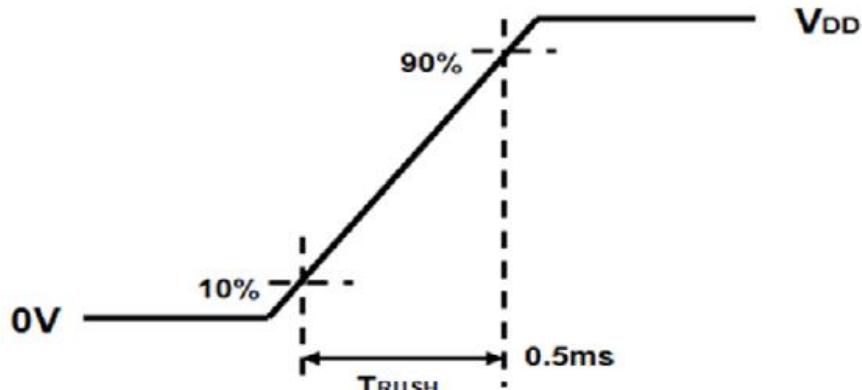
## 2 ABSOLUTE MAXIMUM RATINGS

| ITEM                  | SYMBOL   | VALUES |     | UNIT | REMARK |
|-----------------------|----------|--------|-----|------|--------|
|                       |          | MIN    | MAX |      |        |
| Logic Supply Voltage  | VDD      | -0.3   | 4.0 | V    |        |
| Operation Temperature | $T_{op}$ | -30    | 85  | °C   |        |
| Storage Temperature   | $T_{st}$ | -30    | 85  | °C   |        |

Note (1)  $T_a = 25 \pm 2^\circ\text{C}$

## 3.0 ELECTRICAL SPECIFICATIONS

### 3.1 LCD ELECTRONICS SPECIFICATION

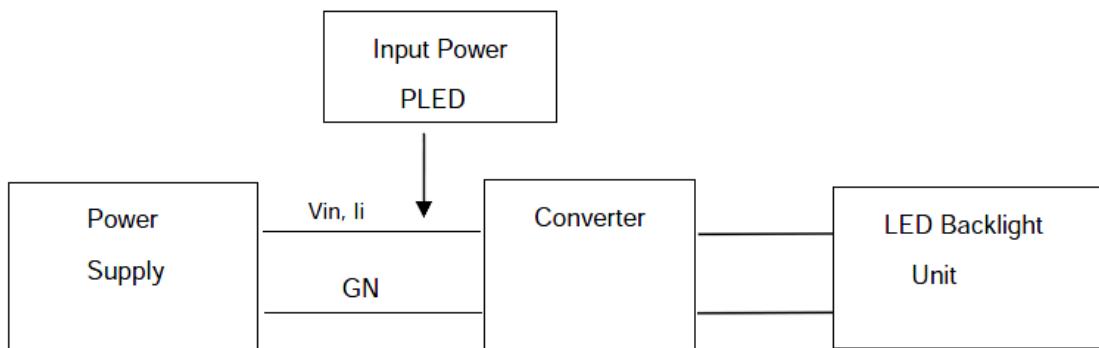

| Parameter                | Symbol           | Value |      |       | Unit | Note    |
|--------------------------|------------------|-------|------|-------|------|---------|
|                          |                  | Min   | Typ. | Max.  |      |         |
| Power Supply Voltage     | VDD              | 3.0   | 3.3  | 3.6   | V    | (1),(2) |
| Ripple Voltage           | VRP              | -     | -    | 200   | mV   | (1),(3) |
| Rush Current             | IRUSH            | -     | -    | 1.5   | A    | (1),(4) |
| VDD Current<br>Current   | IDD              | -     | -    | 0.454 | A    | (1),(3) |
| VDD Power<br>Consumption | White<br>Pattern | PDD   | -    | -     | 1.5  | W       |

Note (1) All of the specifications are guaranteed under normal conditions. Normal conditions are defined as follow: Temperature:  $25^{\circ}\text{C}$  , Humidity:  $55\pm 10\%\text{RH}$ .

Note (2) All of the absolute maximum ratings specified in the table, if exceeded, may cause faulty operation or unrecoverable damage. It is recommended to follow the typical value.

Note (3) The specified VDD current and power consumption are measured under the  $\text{VDD} = 3.3 \text{ V}$ ,  $\text{FV} = 60 \text{ Hz}$  condition and White Pattern.

Note (4) The figures below is the measuring condition of VDD. Rush current can be measured when  $\text{TRUSH}$  is 0.5 ms.




### 3.2 LED DRIVER ELECTRONICS SPECIFICATION

| Parameter                      | Symbol           | Value   |      |      | Unit | Note                         |
|--------------------------------|------------------|---------|------|------|------|------------------------------|
|                                |                  | Min.    | Typ. | Max. |      |                              |
| Converter Power Supply Voltage | LED_Vin          | 10.8    | 12.0 | 13.2 | V    |                              |
| Converter Power Supply Current | I <sub>LED</sub> |         |      | 2    | A    | @LED_Vin=12V<br>Duty=100%    |
| Power Consumption              | P <sub>LED</sub> |         |      | 26.3 | W    | @ LED_Vin = 12V<br>Duty=100% |
| EN Control Level               | Backlight on     | LED_EN  | 1.5  | -    | 5.5  | V                            |
|                                | Backlight off    |         | 0    |      | 0.5  |                              |
| PWM Control Level              | PWM High Level   | LED_PWM | 1.2  | -    | 5.5  | V                            |
|                                | PWM Low Level    |         | 0    | -    | 0.5  |                              |
| PWM Control Duty Ratio         | PWM              | 10      | --   | 100  | %    |                              |
| PWM Control Frequency          | f <sub>PWM</sub> | 100     | -    | 1000 | Hz   |                              |
| LED Life Time                  | L <sub>L</sub>   | 50,000  |      |      | Hrs  | (2)                          |

Note (1) LED light bar input voltage and current are measured by utilizing a true RMS multimeter as shown below:

Note (2) The lifetime of LED is estimated data and defined as the time when it continues to operate under the conditions at  $T_a = 25 \pm 2^\circ\text{C}$  and Duty 100% until the brightness becomes  $\leq 50\%$  of its original value. Operating LED under high temperature environment will reduce life time and lead to color shift.



## 4. Interface

### 4.1 LVDS Interface

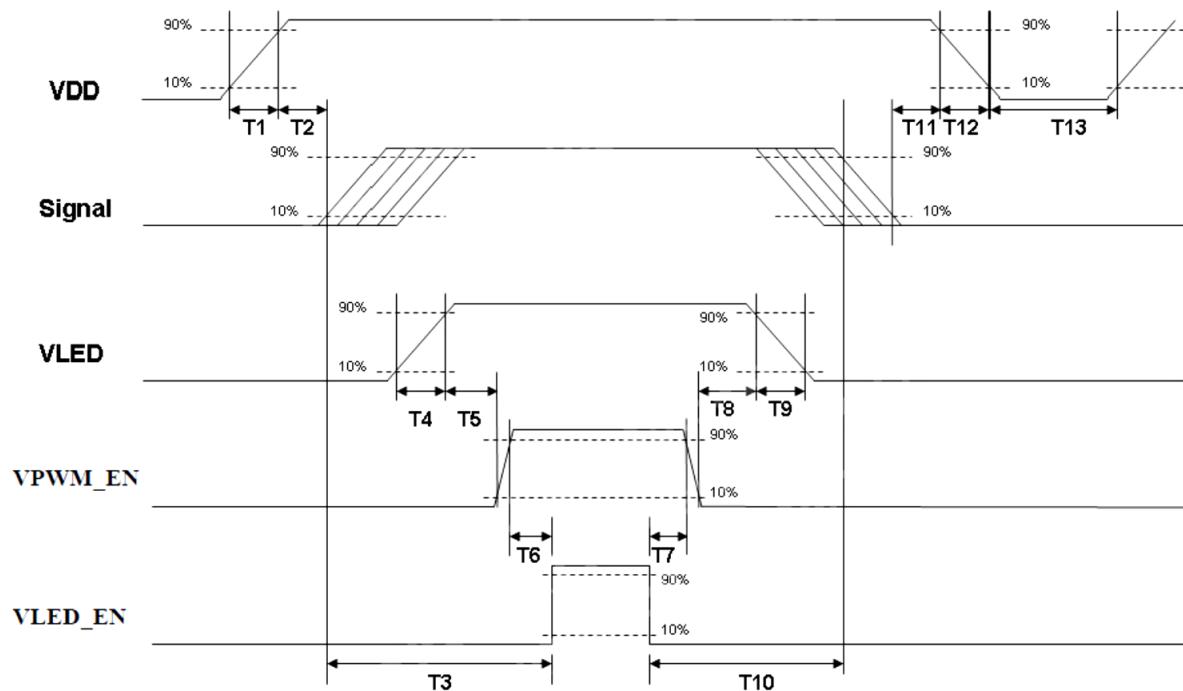
| Item                                    | Description                  |
|-----------------------------------------|------------------------------|
| Manufacturer / Type                     | STM<br>MSBKT2407P30HB        |
| Mating Receptacle / Type<br>(Reference) | JAE<br>FI-X30HL(Locked Type) |

| Pin | Name    | Description                                                                                                             |
|-----|---------|-------------------------------------------------------------------------------------------------------------------------|
| 1   | RxO0-   | Negative LVDS differential data input (Odd data)                                                                        |
| 2   | RxO0+   | Positive LVDS differential data input (Odd data)                                                                        |
| 3   | RxO1-   | Negative LVDS differential data input (Odd data)                                                                        |
| 4   | RxO1+   | Positive LVDS differential data input (Odd data)                                                                        |
| 5   | RxO2-   | Negative LVDS differential data input (Odd data)                                                                        |
| 6   | RxO2+   | Positive LVDS differential data input (Odd data)                                                                        |
| 7   | GND     | Ground                                                                                                                  |
| 8   | RxOCLK- | Negative LVDS differential clock input (Odd clock)                                                                      |
| 9   | RxOCLK+ | Positive LVDS differential clock input (Odd clock)                                                                      |
| 10  | RxO3-   | Negative LVDS differential data input (Odd data)                                                                        |
| 11  | RxO3+   | Positive LVDS differential data input (Odd data)                                                                        |
| 12  | RxE0-   | Negative LVDS differential data input (Even data)                                                                       |
| 13  | RxE0+   | Positive LVDS differential data input (Even data)                                                                       |
| 14  | GND     | Ground                                                                                                                  |
| 15  | RxE1-   | Negative LVDS differential data input (Even data)                                                                       |
| 16  | RxE1+   | Positive LVDS differential data input (Even data)                                                                       |
| 17  | GND     | Ground                                                                                                                  |
| 18  | RxE2-   | Negative LVDS differential data input (Even data)                                                                       |
| 19  | RxE2+   | Positive LVDS differential data input (Even data)                                                                       |
| 20  | RxECLK- | Negative LVDS differential clock input (Even clock)                                                                     |
| 21  | RxECLK+ | Positive LVDS differential clock input (Even clock)                                                                     |
| 22  | RxE3-   | Negative LVDS differential data input (Even data)                                                                       |
| 23  | RxE3+   | Positive LVDS differential data input (Even data)                                                                       |
| 24  | GND     | Ground                                                                                                                  |
| 25  | Bist    | LCD Panel Self Test Enable(3.3V Typ.) For Ampire use, When it is not used, Connecting to GND or Floating is recommended |
| 26  | SDA     | I2C-Compatible Serial-Data Input. Floating is recommended in the Costumer                                               |
| 27  | SCL     | I2C-Compatible Serial-Data Input. Floating is recommended in the Costumer                                               |
| 28  | VDD     | Power Supply Input Voltage(3.3V)                                                                                        |
| 29  | VDD     | Power Supply Input Voltage(3.3V)                                                                                        |
| 30  | VDD     | Power Supply Input Voltage(3.3V)                                                                                        |

## 4.2 LED Driver Interface

| Item                | Description                 |
|---------------------|-----------------------------|
| Manufacturer / Type | STM/MSB24038P8A(P1.25x8pin) |

| Pin | Name    | Description                                    |
|-----|---------|------------------------------------------------|
| 1   | VLED    | LED power supply(12V Typ)                      |
| 2   | VLED    | LED power supply(12V Typ)                      |
| 3   | VLED    | LED power supply(12V Typ)                      |
| 4   | GND     | Ground                                         |
| 5   | GND     | Ground                                         |
| 6   | GND     | Ground                                         |
| 7   | VLED_EN | Backlight On/Off (3.3V Typ)                    |
| 8   | VPWM_EN | System PWM signal input for dimming (3.3V Typ) |


## 4.3 DISPLAY TIMING SPECIFICATIONS

| Parameter            | Symbol | Min.   | Typ.   | Max.     | Unit   |
|----------------------|--------|--------|--------|----------|--------|
| LVDS Clock Frequency | Fclk   | (69.5) | (70.5) | (73)     | MHz    |
| V Total Time         | VT     | (1104) | (1116) | (1080+A) | Clocks |
| V Active Time        | VA     | 1080   |        |          | -      |
| H Total Time         | HT     | (1050) | (1052) | (960+B)  | Lines  |
| H Active Time        | HA     | 960    |        |          | -      |
| Frame Rate           | FV     | -      | (60)   | -        | Hz     |

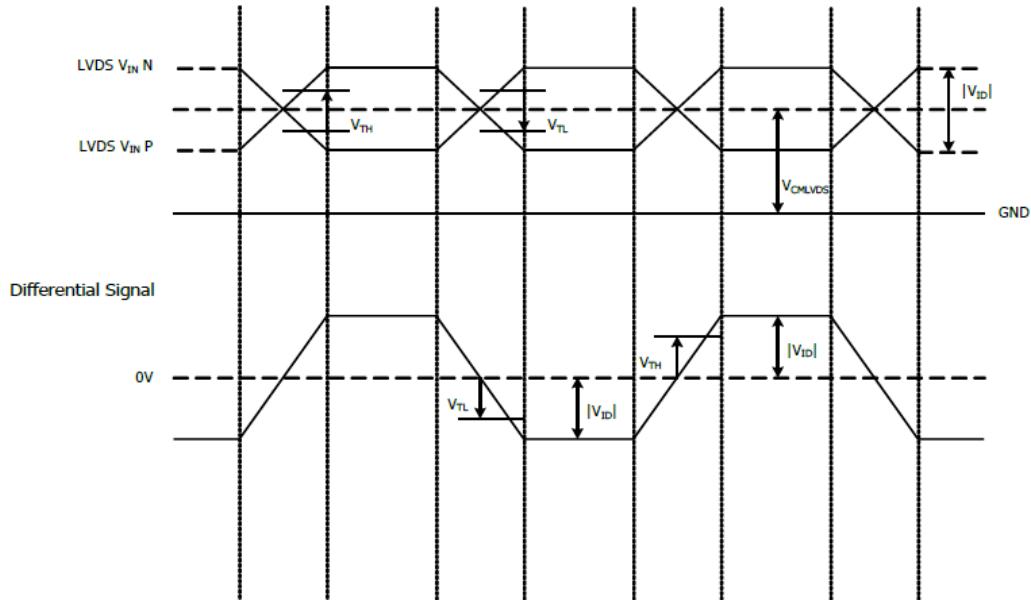
Note (1) SCC can only be driven to 2%

Note (2) The maximum clock frequency=[(960+B)\*(1080+A)\*60]<73MHz

## 4.4 POWER ON/OFF SEQUENCE



Power Sequencing Requirements

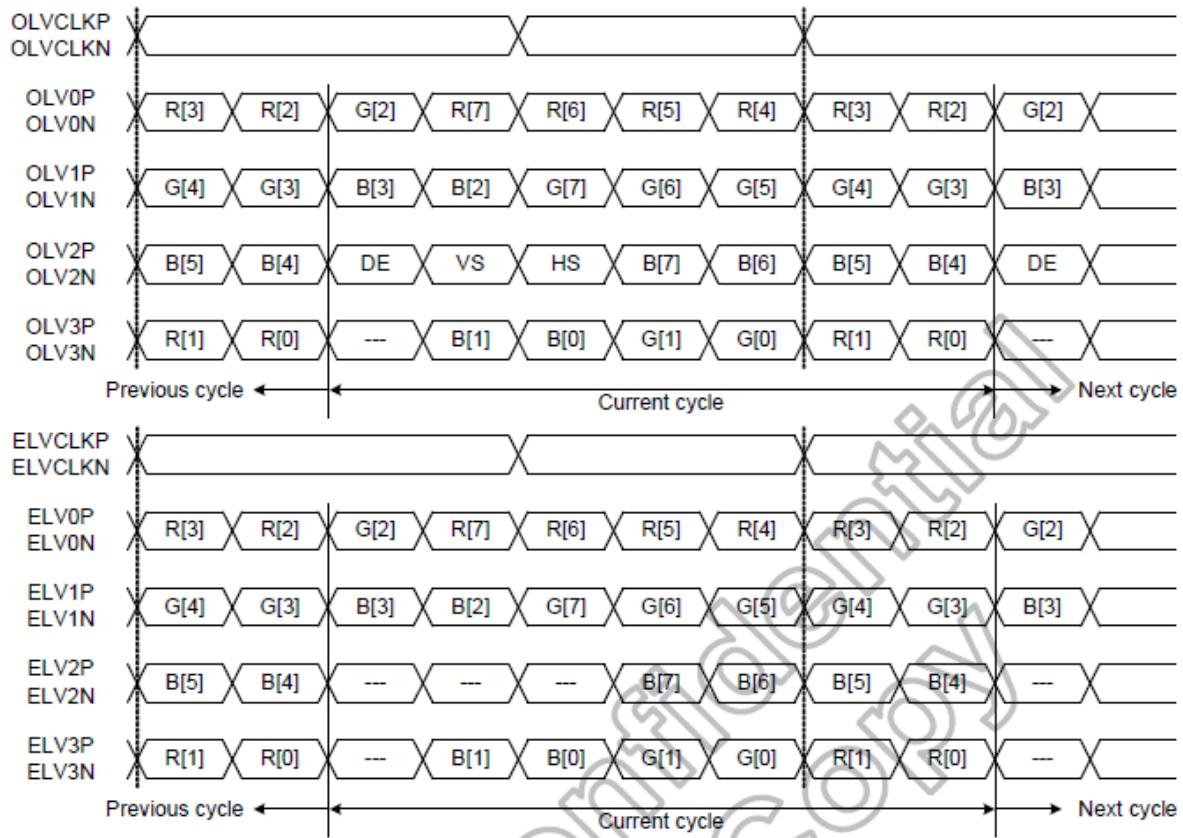

| Parameter | Min. | Typ. | Max. | Unit |
|-----------|------|------|------|------|
| T1        | 0.5  | -    | 10   | ms   |
| T2        | 30   | 40   | 50   | ms   |
| T3        | 200  | -    | -    | ms   |
| T4        | 0.5  | -    | 10   | ms   |
| T5        | 10   | -    | -    | ms   |
| T6        | 10   | -    | -    | ms   |
| T7        | 0    | -    | -    | ms   |
| T8        | 10   | -    | -    | ms   |
| T9        | -    | -    | 10   | ms   |
| T10       | 110  | -    | -    | ms   |
| T11       | 0    | 16   | 50   | ms   |
| T12       | -    | -    | 10   | ms   |
| T13       | 1000 | -    | -    | ms   |

## 4.5 LVDS INPUT SIGNAL SPECIFICATIONS

| Parameter                            | Symbol     | Min. | Typ. | Max. | Unit | Conditions    |
|--------------------------------------|------------|------|------|------|------|---------------|
| Differential Input High Threshold    | $V_{th}$   | -    | -    | +100 | mV   | $V_{CM}=1.2V$ |
| Differential Input Low Threshold     | $V_{tl}$   | -100 | -    | -    | mV   | $V_{CM}=1.2V$ |
| Magnitude Differential Input Voltage | $ V_{ID} $ | 100  | -    | 600  | mV   | -             |
| Common Mode Voltage                  | $V_{CM}$   | 0.7  |      | 1.6  | V    | -             |

Note (1) Input signals shall be low or Hi- resistance state when VDD is off.

Note (2) All electrical characteristics for LVDS signal are defined and shall be measured at the interface connector of LCD.

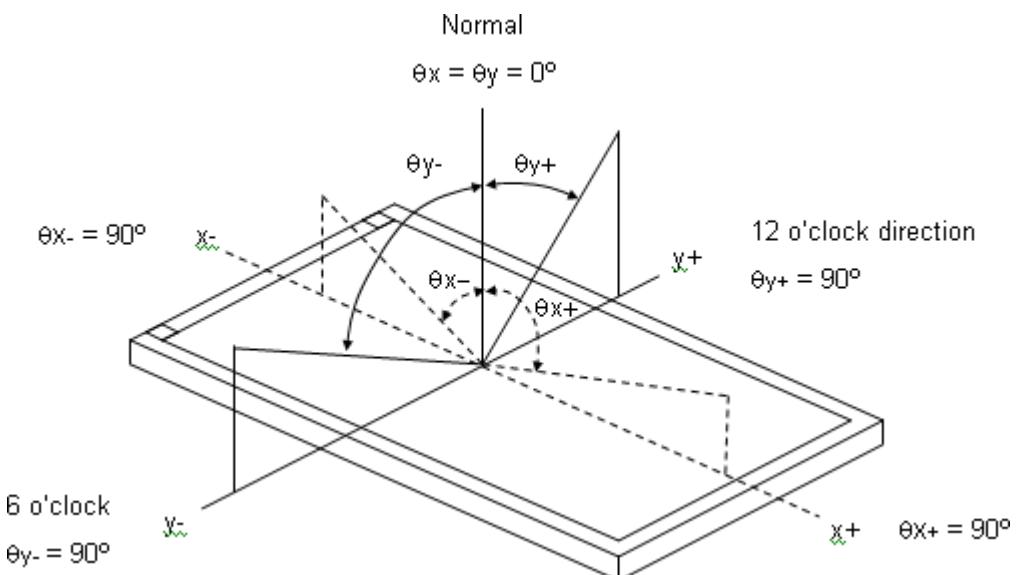



### LVDS AC Electrical Characteristics

| Parameter       | Symbol | Min. | Typ.   | Max. | Unit |
|-----------------|--------|------|--------|------|------|
| Clock Period    | TLVCP  | -    | (T)    | -    | ns   |
| Clock High Time | TLVCH  | -    | (4T/7) | -    | ns   |
| Clock Low Time  | TLVCL  | -    | (3T/7) | -    | ns   |

Note :  $T=1/F_{clk}$

## Data Mapping




## 5.0 Optical Specifications

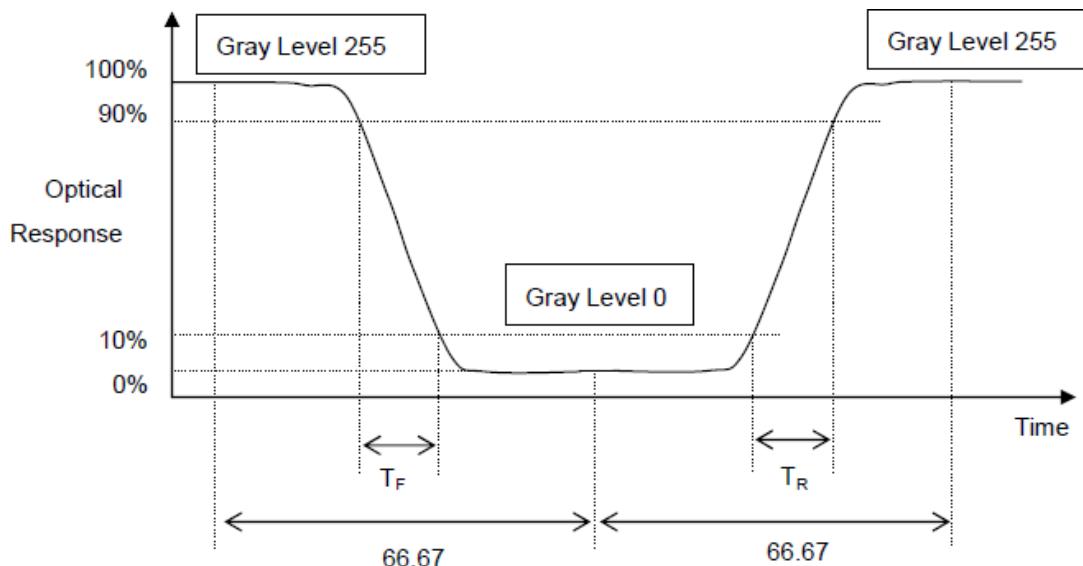
The optical characteristics are measured under stable conditions as following notes

| Item                          |            | Symbol                       | Condition                                       | Min.       | Typ.  | Max.       | Unit              | Note        |  |
|-------------------------------|------------|------------------------------|-------------------------------------------------|------------|-------|------------|-------------------|-------------|--|
| Color Chromaticity (CIE 1931) | Red        | R <sub>x</sub>               | $\theta_x=0^\circ, \theta_y=0^\circ$<br>CS-2000 | Typ - 0.05 | T.B.D | Typ + 0.05 | -                 | (1),<br>(5) |  |
|                               |            | R <sub>y</sub>               |                                                 |            | T.B.D |            |                   |             |  |
|                               | Green      | G <sub>x</sub>               |                                                 |            | T.B.D |            |                   |             |  |
|                               |            | G <sub>y</sub>               |                                                 |            | T.B.D |            |                   |             |  |
|                               | Blue       | B <sub>x</sub>               |                                                 |            | T.B.D |            |                   |             |  |
|                               |            | B <sub>y</sub>               |                                                 |            | T.B.D |            |                   |             |  |
|                               | White      | W <sub>x</sub>               |                                                 |            | 0.313 |            |                   |             |  |
|                               |            | W <sub>y</sub>               |                                                 |            | 0.329 |            |                   |             |  |
| Center Luminance of White     |            | L <sub>c</sub>               |                                                 | 680        | 850   | -          | cd/m <sup>2</sup> | (4),<br>(5) |  |
| Contrast Ratio                |            | CR                           |                                                 | 700        | 1000  | -          | -                 | (2),<br>(5) |  |
| Response Time                 |            | T <sub>R+T<sub>F</sub></sub> | $\theta_x=0^\circ, \theta_y=0^\circ$            | -          | 25    | 35         | ms                | (3)         |  |
| NTSC                          |            |                              | $\theta_x=0^\circ, \theta_y=0^\circ$            | -          | 72    | -          | %                 | (5),<br>(6) |  |
| Luminance Uniformity          |            |                              | 9 Points                                        | 75         | 80    |            | %                 | (5),<br>(6) |  |
| Viewing Angle                 | Horizontal | $\theta_x+$                  | CR $\geq 10$                                    | 80         | 85    | ---        | Deg.              | (1),<br>(5) |  |
|                               |            | $\theta_x-$                  |                                                 | 80         | 85    |            |                   |             |  |
|                               | Vertical   | $\theta_y+$                  |                                                 | 80         | 85    |            |                   |             |  |
|                               |            | $\theta_y-$                  |                                                 | 80         | 85    | ---        |                   |             |  |

Note (1) Definition of Viewing Angle ( $\theta_x, \theta_y$ ):



Note (2) Definition of Contrast Ratio (CR):


The contrast ratio can be calculated by the following expression. Contrast Ratio (CR) = L255 / L0

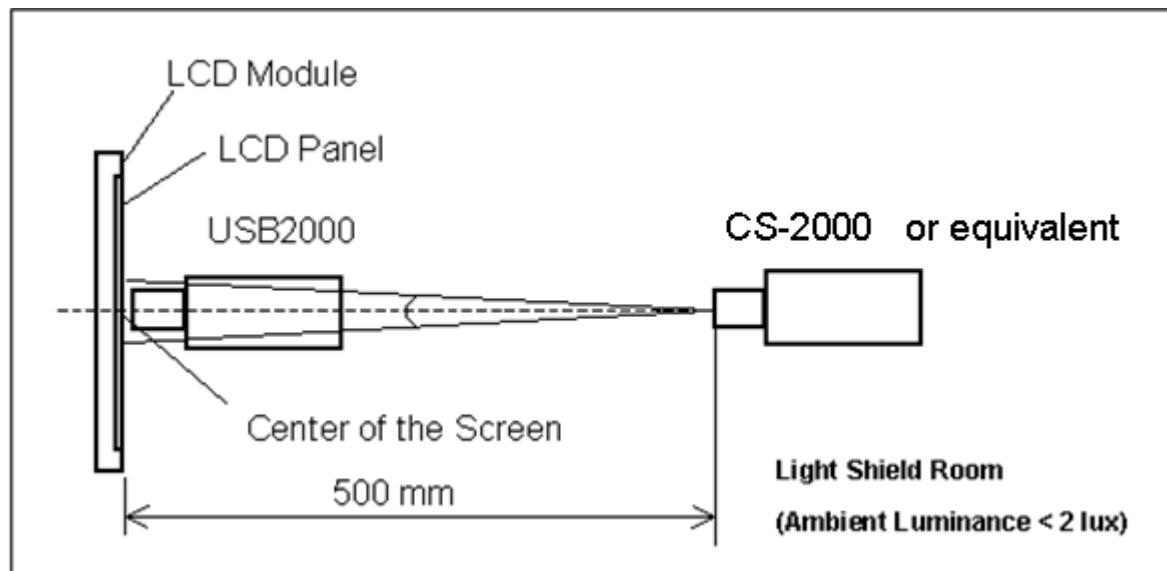
L255: Luminance of gray level 255 L0: Luminance of gray level 0

CR = CR (5)

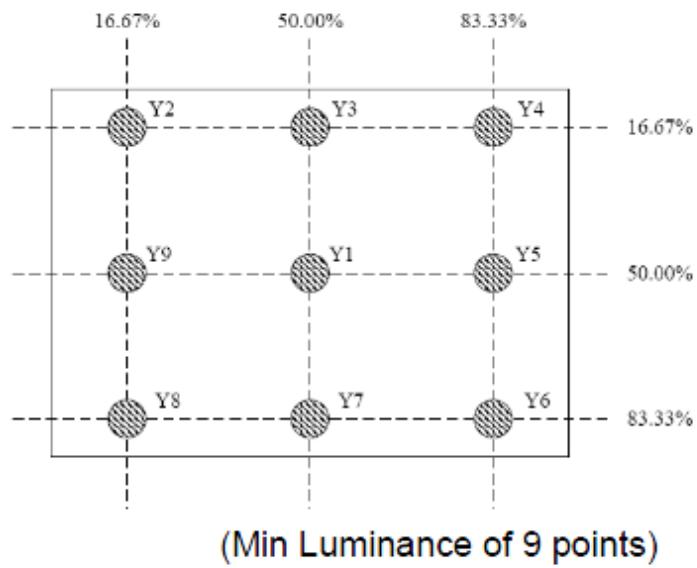
CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (3) Definition of Response Time ( $T_F$ ,  $T_R$ ):




Note (4) Definition of Luminance of White ( $L_C$ ):

Measure the luminance of gray level 255 at center point  $L_C = L$  (5)


$L(x)$  is corresponding to the luminance of the point X at Figure in Note (6).

Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a windless room.



Note (6) Definition of White Variation



$$\text{Luminance uniformity} = \frac{\text{(Min Luminance of 9 points)}}{\text{(Max Luminance of 9 points)}} \times 100\%$$

## 6.0 Touch panel electrical specification

### 6.1 Electrical characteristics

| ITEM                   | SPECIFICATION                     |
|------------------------|-----------------------------------|
| Type                   | Projective Capacitive Touch Panel |
| Activation             | Two-fingers or Single-finger      |
| X/Y Position Reporting | Absolute Position                 |
| Touch Force            | No contact pressure required      |
| Calibration            | No need for calibration           |
| Report Rate            | Approx. 200 points/sec            |
| Control IC             | <b>ILI2510</b>                    |

| ITEM                                                      | Symbol           | MIN  | TYP           | MAX  | UNIT |
|-----------------------------------------------------------|------------------|------|---------------|------|------|
| Touch panel power supply                                  | VDD              | 4.75 | 5             | 5.25 | V    |
| Touch panel power supply current at Normal operation mode | I <sub>VDD</sub> | --   | 45(Reference) | --   | mA   |
| Touch panel power supply current at USB suspend mode      | I <sub>VDD</sub> | --   | TBD           | --   | uA   |

### 6.2 Interface

| Pin No. | Symbol | Function      |
|---------|--------|---------------|
| 1       | VCC 5V | USB POWER 5V  |
| 2       | D+     | USB Data+     |
| 3       | D-     | USB Data-     |
| 4       | NC     | No connection |
| 5       | NC     | No connection |
| 6       | GND    | Ground        |

## 7. RELIABILITY TEST CONDITIONS

| Test Item                  | Test Conditions                                                                                                             | Note |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------|------|
| High Temperature Operation | 85±3°C , t=240 hrs                                                                                                          |      |
| Low Temperature Operation  | -30±3°C , t=240 hrs                                                                                                         |      |
| High Temperature Storage   | 85±3°C , t=240 hrs                                                                                                          | 1,2  |
| Low Temperature Storage    | -30±3°C , t=240 hrs                                                                                                         | 1,2  |
| Thermal Shock Test         | -20°C ~ 60°C<br>30 m in. ~ 30 min. ( 1 cycle )<br>Total 100cycle                                                            | 1,2  |
| Storage Humidity Test      | 40 °C, Humidity 60%, 240 hrs                                                                                                | 1,2  |
| Vibration Test (Packing)   | Sweep frequency : 10 ~ 50 ~ 10 Hz/1min<br>Amplitude : 0.75mm<br>Test direction : X.Y.Z/3 axis<br>Duration : 30min/each axis | 2    |

Note 1: Condensation of water is not permitted on the module.

Note 2: The module should be inspected after 1 hour storage in normal conditions (15-35°C, 45-65%RH).

Note 3 : The module shouldn't be tested more than one condition, and all the test conditions are independent.

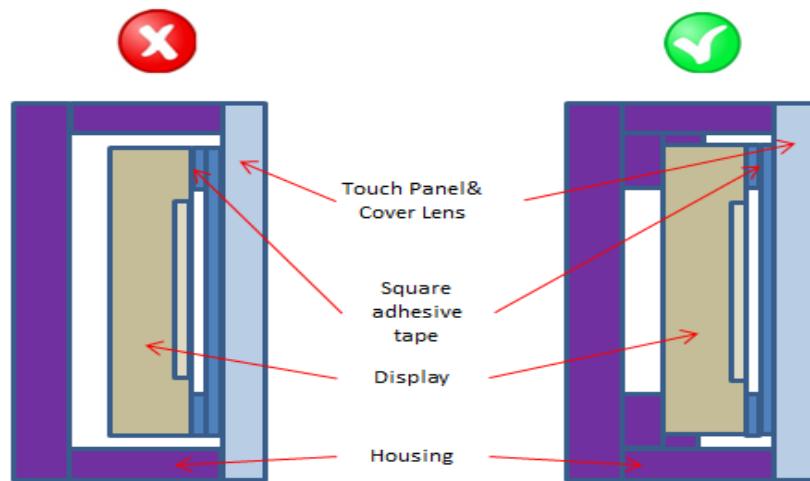
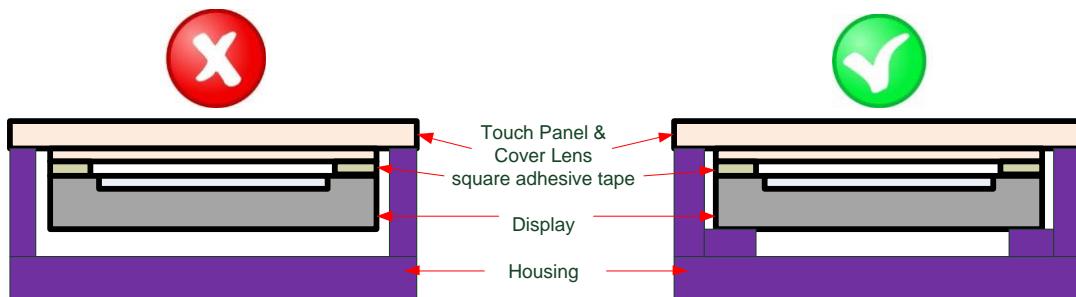
Note 4 : All the reliability tests should be done without protective film on the module.

Definitions of life end point:

- Current drain should be smaller than the specific value.
- Function of the module should be maintained.
- Appearance and display quality should not have degraded noticeably.
- Contrast ratio should be greater than 50% of the initial value.

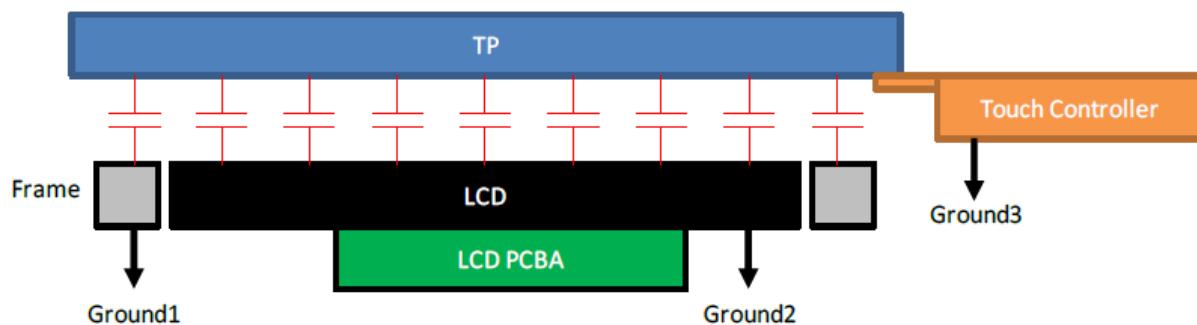
## 8. General Precautions

### 8.1 Handling Precautions



1. Display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
2. If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.
3. Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
4. The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
5. If the display surface is contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:
  - Isopropyl alcohol
  - Ethyl alcoholSolvents other than those mentioned above may damage the polarizer. Especially, do not use the following:
  - Water
  - Ketone
  - Aromatic solvents
6. Do not attempt to disassemble the LCD Module.
7. If the logic circuit power is off, do not apply the input signals.
8. To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
  - a. Be sure to ground the body when handling the LCD Modules.
  - b. Tools required for assembly, such as soldering irons, must be properly ground.
  - c. To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
  - d. The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.

## 8.2 Storage precautions

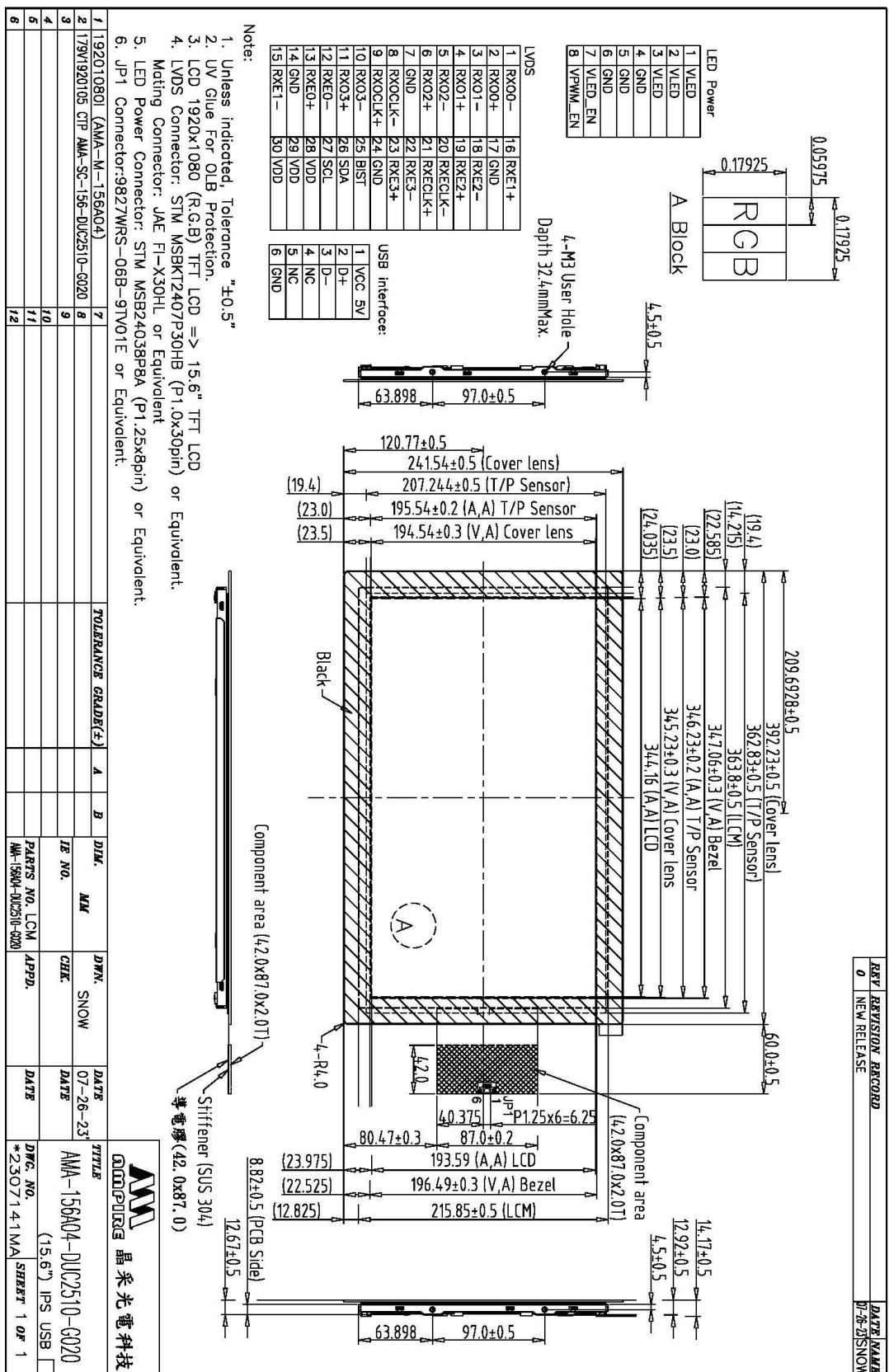
1. When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.
2. The LCD modules should be stored under the storage temperature range. If the LCD modules will be stored for a long time, the recommend condition is:  
Temperature : 0°C ~ 40°C  
Relatively humidity: ≤80%
3. The LCD modules should be stored in the room without acid, alkali and harmful gas.

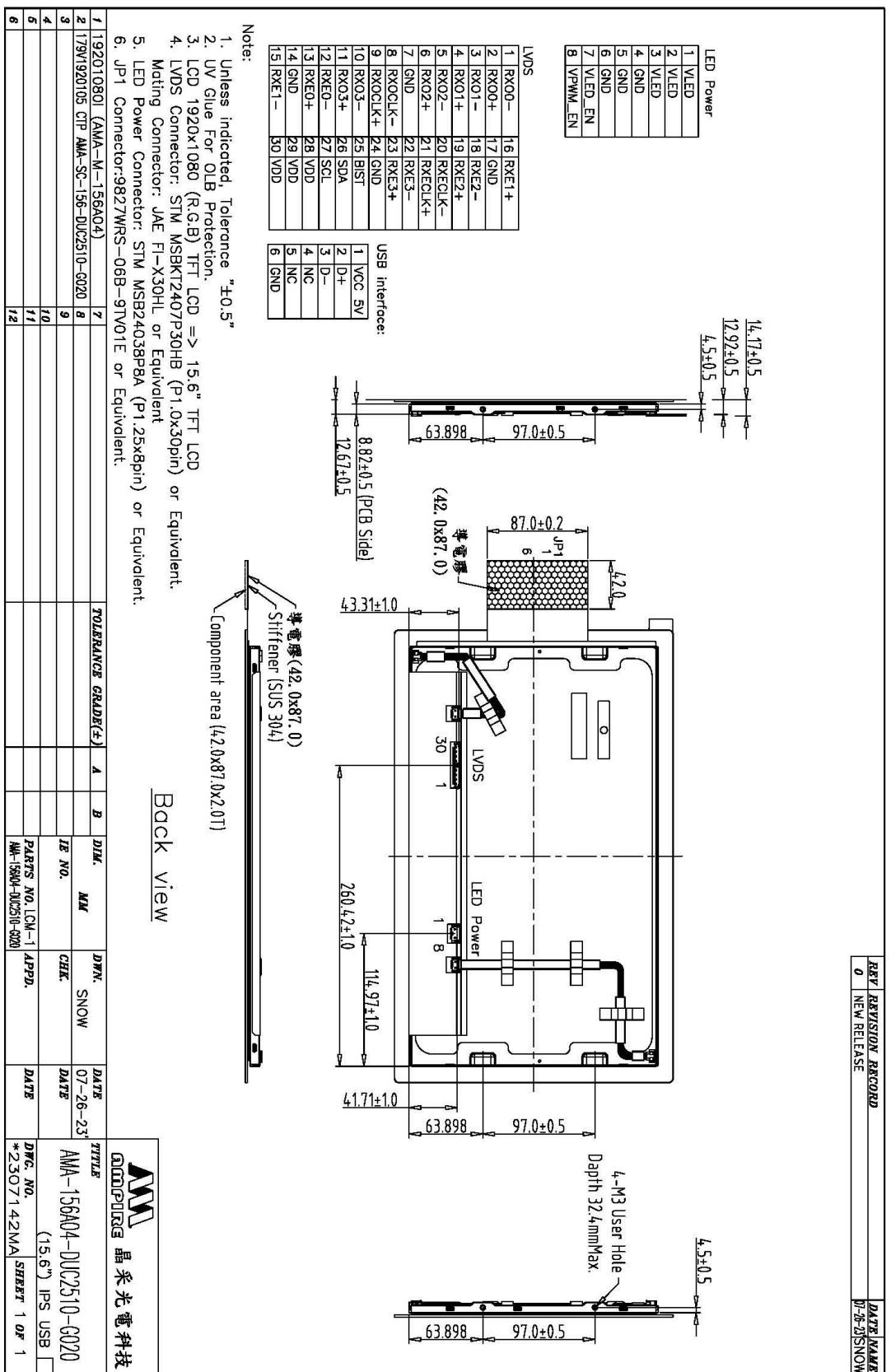

## 8.3 Mechanism precautions

The square adhesive tape which is between the touch panel and display can't provide well supporting in the long term and high ambient temperature condition. Whether upright or horizontal position the support holder which is in the back side of the display is needed. Do not let the display floating.



#### 8.4 General Precautions


1. Do not keep the LCD at the same display pattern continually. The residual image will happen and it will damage the LCD. Please use screen saver.
2. TP needs to work in environment with stable stray capacitance. In order to minimize the variation in stray capacitance, all conductive mechanical parts must not be floating. Intermittent floating any conductive part around the touch sensor may cause significant stray capacitance change and abnormal touch function. It is recommended to keep all conductive parts having same electrical potential as the GND of the touch controller module.




GND1, GND2 and GND3 should be connected together to have the same ground

3. The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.

## 9. OUTLINE DIMENSION





## **10. Packing**

T.B.D.