

- □ Tentative Specification
- □ Preliminary Specification
- Approval Specification

MODEL NO.: G101ICE SUFFIX: LM1

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note	
Please return 1 copy for y signature and comments.	our confirmation with your

Approved By	Checked By	Prepared By
林秋森	吳承旻	黄致偉

Version 2.0 5 May 2023 1 / 48

CONTENTS

	ENERAL DESCRIPTION	_
1	.1 OVERVIEW	5
1	.2 FEATURE	5
1	.3 APPLICATION	5
1	.4 GENERAL SPECIFICATIONS	5
1	.5 MECHANICAL SPECIFICATIONS	6
2. A	BSOLUTE MAXIMUM RATINGS	7
2	.1 ABSOLUTE RATINGS OF ENVIRONMENT	7
2	.2 ELECTRICAL ABSOLUTE RATINGS	8
	2.2.1 TFT LCD MODULE	8
	2.2.2 BACKLIGHT UNIT	8
3. E	LECTRICAL CHARACTERISTICS	9
3	.1 TFT LCD MODULE	9
3	.2 Vcc Power Dip Condition	10
3	.3 BACKLIGHT UNIT	11
4. B	LOCK DIAGRAM	12
	.1 TFT LCD MODULE	
	IPUT TERMINAL PIN ASSIGNMENT	
5	.1 TFT LCD MODULE	13
	.2 COLOR DATA INPUT ASSIGNMENT	
	ITERFACE TIMING	
	.1 INPUT SIGNAL TIMING SPECIFICATIONS	
	.2 POWER ON/OFF SEQUENCE	
	.3 SCANNING DIRECTION	
	PTICAL CHARACTERISTICS	
7	.1 TEST CONDITIONS	23
	.2 OPTICAL SPECIFICATIONS	
	ELIABILITY TEST CRITERIA	
	ACKAGING	
	.1 PACKING SPECIFICATIONS	
9	.2 PACKING METHOD	27
9	.3 UN-PACKING METHOD	28
10. I	DEFINITION OF LABELS	29
	0.1 INX MODULE LABEL	
	PRECAUTIONS	
	1.1 ASSEMBLY AND HANDLING PRECAUTIONS	
1	1.2 STORAGE PRECAUTIONS	

11.3 OTHER PRECAUTIONS	31
12. MECHANICAL CHARACTERISTICS	
	_
Appendix, SYSTEM COVER DESIGN NOTICE	34

REVISION HISTORY

Version	Date	Page	Description
Ver 2.0	02 May 2023	All	V2.0 was first issued.

Version 2.0 5 May 2023 4 / 48

1. GENERAL DESCRIPTION

1.1 OVERVIEW

G101ICE-LM1 is a 10.1" TFT Liquid Crystal Display module with LED Backlight units and 30 pins LVDS interface. This module supports 1280 x 800 WXGA mode and can display 16.7M/ 262k colors. The LED driving device for Backlight is built in PCBA.

1.2 FEATURE

- WXGA (1280 x 800 pixels) resolution
- DE (Data Enable) only mode
- LVDS Interface with 1pixel/clock
- Wide operating temperature.
- RoHS compliance

1.3 APPLICATION

- -TFT LCD Monitor
- Factory Application
- Amusement

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	216.96 (H) x 135.60 (V) (10.1" diagonal)	mm	(1)
Driver Element	a-Si TFT active matrix	-	-
Pixel Number	1280 x R.G.B x 800	pixel	-
Pixel Pitch	0.1695 (H) x 0.1695 (V)	mm	-
Pixel Arrangement	RGB vertical Stripe	-	-
Display Colors	16.7M / 262K	color	-
Display Mode	Normally Black	-	-
Surface Treatment	Hard Coating (3H), Anti-Glare	-	-
Module Power Consumption	3.1	W	Тур.

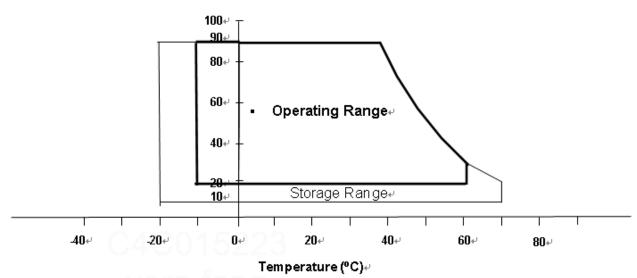
1.5 MECHANICAL SPECIFICATIONS

Ite	em	Min.	Тур.	Max.	Unit	Note
	Horizontal(H)	226.92	227.42	227.92	mm	
Module Size	Vertical(V)	147.19	147.69	148.19	mm	(1)
	Depth(D)	-	2.55(w/o PCBA) 4.35(w/PCBA)	2.8 4.85	mm	` '
CF Polarizer	Horizontal	219.06	219.31	219.56	mm	-
CF Polarizer	Vertical	138.0	138.25	138.50	mm	
Active Area	Horizontal	216.86	216.96	217.06	mm	
Active Area	Vertical	135.50	135.60	135.70	mm	
We	ight	-	183	190	g	

Note (1)Please refer to the attached drawings for more information of front and back outline dimensions.

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT


ltom	Cumbal	Va	lue	Lloit	Note
Item	Symbol	Min.	Max.	Unit	Note
Operating Ambient Temperature	T _{OP}	-10	+60	°C	(4)(2)
Storage Temperature	T _{ST}	-20	+ 70	°C	(1)(2)

Note (1) Temperature and relative humidity range is shown in the figure below

- (a) 90 %RH Max.
- (b) Wet-bulb temperature should be 39 °C Max.
- (c) No condensation.

Note (2) Any condition of ambient operating temperature ,the surface of active area should be keeping not higher than 60°C.(Panel sureface temperature).

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

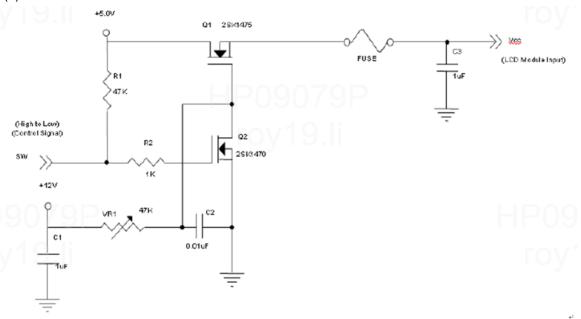
Item	Cumbal	Value		Unit	Note	
item	Symbol	Min.	Max.	Offic	Note	
Power Supply Voltage	VCC	-0.3	5.5	V	(1)	
Logic Input Voltage	Vin	-0.3	4.0	V	(1)	

2.2.2 BACKLIGHT UNIT

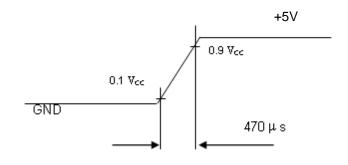
ltom	Cumbal	Va	lue	Unit	Note
Item	Symbol	Min.	Max.	Offic	Note
Converter Voltage	V _i	-0.3	18	V	(1), (2)
Enable Voltage	EN	-0.3	5.5	V	
Backlight Adjust	Dimming	-0.3	5.5	V	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for LED (Refer to 3.2 for further information).

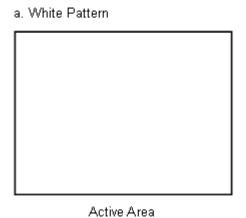

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE


Parameter	Cumbal		Value		Unit	Note	
Parameter		Symbol	Min.	Тур.	Max.	Unit	note
Power Supply Vo	ltage	V _{cc}	4.5	5	5.5	V	-
Ripple Voltag	е	V_{RP}	ı	ı	300	mVp-p	
Inrush Currer	I _{INRUSH}	ı	ı	2.0	Α	(2)	
Power Supply Current	White	lcc		220	250	mA	(3)a
Fower Supply Current	Black	ICC		140	170	mA	(3)b
LVDS differential inpu	t voltage	V_{id}	200	-	600	mV	(5)
LVDS common input	voltage	V_{ic}	1.0	1.2	1.4	V	(5)
Differential Input Voltage for	"H" Level	V_{IH}	ı		100	mV	-
LVDS Receiver Threshold	"L" Level	V_{IL}	-100	-		mV	-
Terminating Res	istor	R _T	-	100	-	Ohm	-

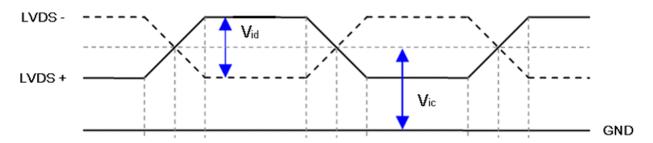
Note (1) The module should be always operated within above ranges.

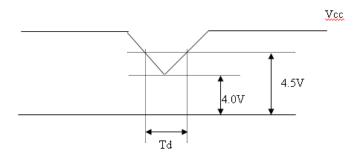
Note (2)Measurement Conditions:


Vcc 上升時間為 470μs



Version 2.0 5 May 2023 9 / 48

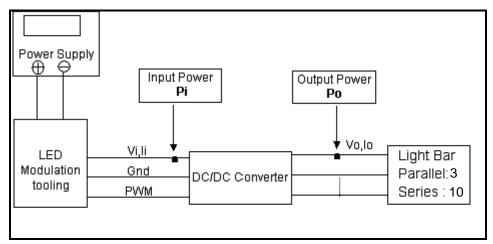

Note (3)The specified power supply current is under the conditions at V_{DD} =5V, Ta = 25 ± 2 °C, DC Current and f_v = 60 Hz, whereas a power dissipation check pattern below is displayed.


Note (4) The power consumption is specified at the pattern with the maximum current.

Note (5) VID waveform condition

3.2 Vcc Power Dip Condition

- Dip condition: $4.0V \le Vcc \le 4.5V$, $Td \le 20ms$


Version 2.0 5 May 2023 10 / 48

3.3 BACKLIGHT UNIT

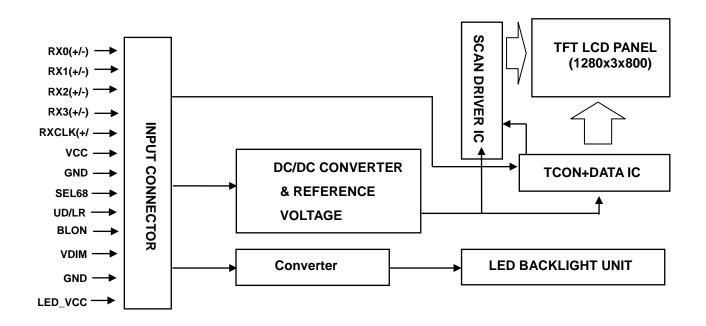
Darame	otor	Symbol		Value		Unit	Note
Parameter		Symbol	Min.	Тур.	Max.	Unit	Note
Converter Inp	ut Voltage	V_{i}	10.8	12.0	13.2	V_{DC}	(Duty 100%)
Converter Input F	Ripple Voltage	V_{iRP}	-	-	350	mV	
Converter Inp	ut Current	l _i	-	0.17	0.2	A _{DC}	@ Vi = 12V (Duty 100%)
Converter Inru	sh Current	I _{iRUSH}	-	ı	3.0	Α	@ Vi rising time = 20ms (Vi =12V)
Input Power Co	Input Power Consumption		-	2.0	2.4	W	(1),@ Vi = 12V (Duty 100%)
EN Control Level	Backlight on	ENLED	2.5	3.3	5.0		
EN Control Level	Backlight off	(BLON)	0		0.3		
PWM Control Level	PWM High Level	Dimming	2.5	3.3	5.0		
PWW Control Level	PWM Low Level	(E_PWM)	0	1	0.15		
PWN Noise	Range	VNoise	-	-	0.1	V	
PWM Control	Frequency	f_{PWM}	190	200	20k	Hz	(2)
			-		400	0/	(2), Suggestion@
PWM Dimming Control Duty Ratio			5		100	%	190Hz≦f _{PWM} <1kHz
		-	20	-	100	%	(2), @ 1kHz≦f _{PWM} ≤20kHz
LED Life	Time	L _{LED}	12,000	-	-	Hrs	(3)

Note (1)LED current is measured by utilizing a high frequency current meter as shown below:

Note (2) At 190 ~1kHz PWM control frequency, duty ratio range is restricted from 5% to 100%.

1K ~20kHz PWM control frequency, duty ratio range is restricted from 20% to 100%.

If PWM control frequency is applied in the range from 1KHz to 20KHZ, The "non-linear" phenomenon on the Backlight Unit may be found. So It's a suggestion that PWM control frequency should be less than 1KHz.


Note (3) The lifetime of LED is estimated data and defined as the time when it continues to operate under the conditions at Ta = 25 ±2 °C and Duty 100% until the brightness becomes ≤ 50% of its original value.

Operating LED at high temperature condition will reduce life time and lead to color shift.

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

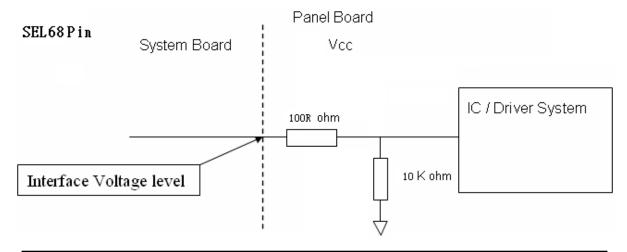
5. INPUT TERMINAL PIN ASSIGNMENT

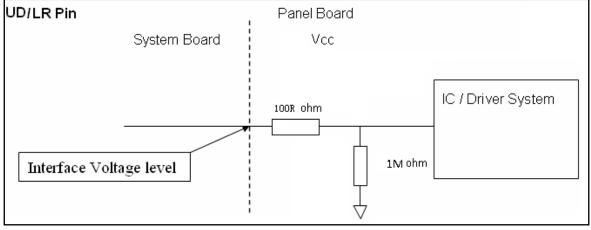
5.1 TFT LCD MODULE

Pin No.	Symbol	Function	Polarity	Note
1	VCC	Power supply 5V		(5)
2	VCC	Power supply 5V		
3	UD/LR	Reverse Scan Control, Low → Normal Mode. High → Reverse Scan		(3)(4)
4	NC	Not connection, this pin should be open		
5	NC	Not connection, this pin should be open		
6	SEL68	LVDS 6/8 bit select function control, Low \rightarrow 6 bit Input Mode. High \rightarrow 8bit Input Mode.		(3)(4)
7	NC	Not connection, this pin should be open		
8	NC	Not connection, this pin should be open		
9	LED_VCC	Converter input voltage 12V		
10	LED_VCC	Converter input voltage 12V		
11	LED_VCC	Converter input voltage 12V		
12	NC	Not connection, this pin should be open		
13	LED_GND	Converter ground		
14	LED_GND	Converter ground		
15	LED_GND	Converter ground		
16	LED_EN	Enable pin 3.3V		
17	LED_PWM	Backlight Adjust (PWM Dimming 190-210Hz,H: 3.3VDC, L: 0VDC)		
18	NC	Not connection, this pin should be open		
19	GND	Ground		
20	RXO3+	Positive LVDS differential data input. Channel O3	Positive	
21	RXO3-	Negative LVDS differential data input. Channel O3	Negative	
22	RXOC+	Positive LVDS differential clock input.	Positive	
23	RXOC-	Negative LVDS differential clock input.	Negative	
24	GND	Ground		
25	RXO2+	Positive LVDS differential data input. Channel O2	Positive	
26	RXO2-	Negative LVDS differential data input. Channel O2	Negative	
27	RXO1+	Positive LVDS differential data input. Channel O1	Positive	
28	RXO1-	Negative LVDS differential data input. Channel O1	Negative	
29	RXO0+	Positive LVDS differential data input. Channel O0	Positive	
30	RXO0-	Negative LVDS differential data input. Channel O0	Negative	

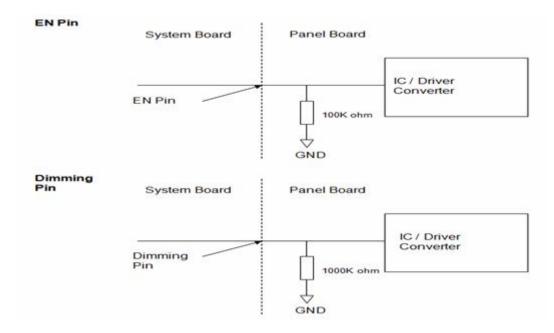
Note (1) Connector Part No.: STM MSAK24025P30MB(Exterior silver) or I-PEX 20455-030E-76(Exterior gold) or equivalent.

Note (2) User's connector Part No.: I-PEX 20453-030T-03 or equivalent


Note (3) "Low" stands for 0V. "High" stands for 3.3V.


Note (4)Interface optional pin has internal scheme as following diagram, Customer should keep the interface voltage level requirement which including panel board loading as below.

Note (5) Pin1 location is Power supply 5V to comply with MECHANICAL CHARACTERISTICS.



5.2 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color.

		Data Signal																	
	Color			Re					Green					Blue					
		R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(61)	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(61)	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
	Green(62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Blue(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	L	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
Blue	Blue(61)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
	Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue(63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

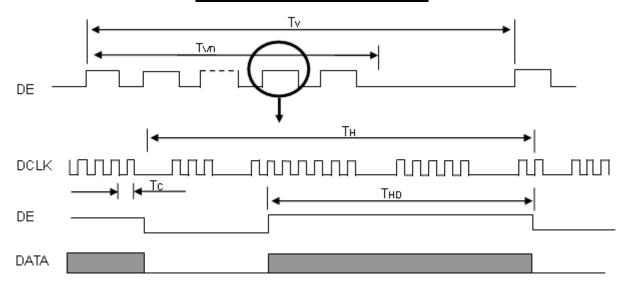
The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input.

												D		Sig	nal										
	Color				Re									een								ue			
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	B7	B6	B5	B4	В3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	: D = -1(050)	:	:	-		-	:	:	:	:		:	:	:	:	:	:		:		:	:		:	:
Red	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
0.00	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:		:	:	:	:	:	:	-	:	:	:	:		:	:	:	:
Of	: DI - (050)	:	:	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:	:			:	:	;
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	7	1	1	1	1

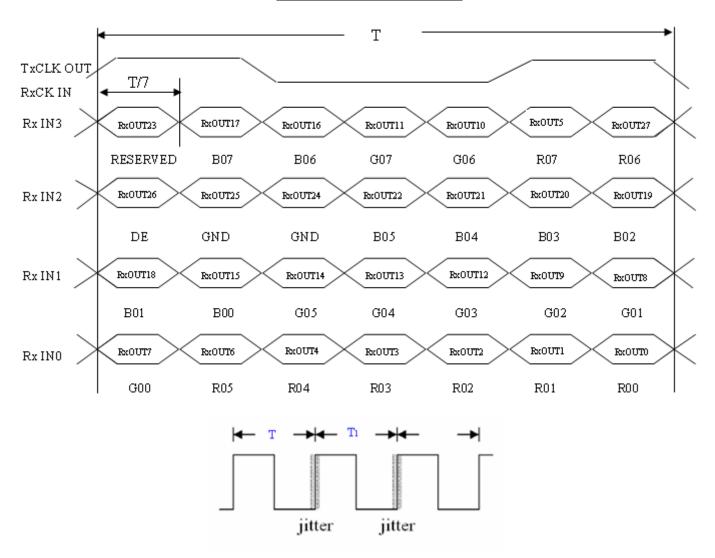
Note (1) 0: Low Level Voltage, 1: High Level Voltage

6. INTERFACE TIMING

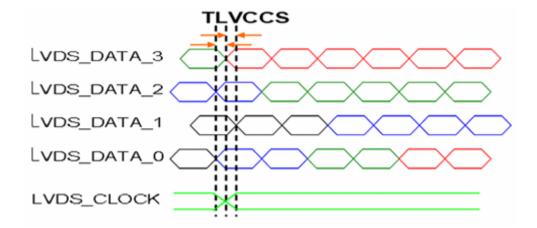
6.1 INPUT SIGNAL TIMING SPECIFICATIONS


The input signal timing specifications are shown as the following table and timing diagram.

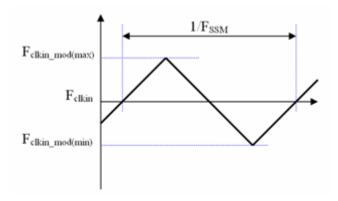
Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note	
	Frequency	Fc	65	71.1	74.7	MHz	-	
	Period	Tc	13.38	14.06	15.38	ns		
LVDS Clock	Input Clock to data skew	TLVCCS	1	-	0.25	UI	(a)	
LVD3 Clock	Spread spectrum modulation range	F _{clkin_mod}	-1.5	-	1.5	%	(b)	
	Spread spectrum modulation frequency	F _{SSM}	ı	-	90	KHz		
	Frame Rate	Fr	60	60	60	Hz	-	
Vertical Display Term	Total	Tv	810	823	900	Th	Tv=Tvd+Tvb	
Vertical Display Territ	Active Display	Tvd	800	800	800	Th	-	
	Blank	Tvb	10	23	100	Th	-	
Harizantal Diaplay	Total	Th	1362	1440	1480	Tc	Th=Thd+Thb	
Horizontal Display Term	Active Display	Thd	1280	1280	1280	Tc	-	
	Blank	Thb	82	160	170	Tc	-	


Note (1)Because this module is operated by DE only mode, Hsync and Vsync input signals should be set to low logic level or ground. Otherwise, this module would operate abnormally.

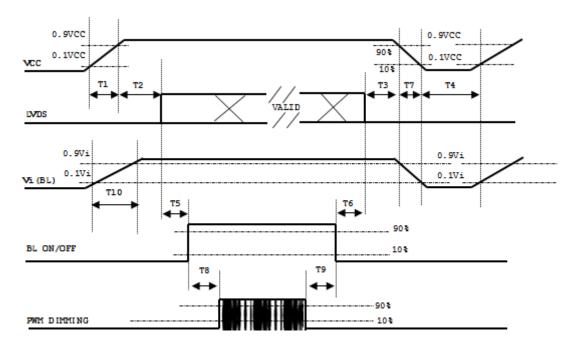
Note (2) The Tv(Tvd+Tvb) must be integer, otherwise, the module would operate abnormally.


INPUT SIGNAL TIMING DIAGRAM

TIMING DIAGRAM of LVDS


Note (a) Input Clock to data skew is defined as below figures.

Version 2.0 5 May 2023 19 / 48



Note (b) The SSCG (Spread spectrum clock generator) is defined as below figures.

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD assembly, the power on/off sequence should be as the diagram below.

Version 2.0 5 May 2023 **20 / 48**

Doromotor		Units				
Parameter	Min	Тур	Max	Offics		
T1	0.5	1	10	ms		
T2	0	1	50	ms		
T3	0	1	50	ms		
T4	500	1	-	ms		
T5	450	1	-	ms		
T6	200	1	-	ms		
T7	10	1	100	ms		
Т8	10	-	-	ms		
Т9	10	-	-	ms		
T10	20	-	50	ms		

Note:

- (1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.
- (2) When the backlight turns on before the LCD operation of the LCD turns off, the display may momentarily become abnormal screen.
- (3) In case of VCC = off level, please keep the level of input signals on the low or keep a high impedance.
- (4) T4 should be measured after the module has been fully discharged between power off and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.
- (6) INX won't take any responsibility for the products which are damaged by the customers not following the Power Sequence.
- (7) There might be slight electronic noise when LCD is turned off (even backlight unit is also off). To avoid this symptom, we suggest "Vcc falling timing" to follow "T7 spec"..

6.3 SCANNING DIRECTION

The following figures show the image see from the front view. The arrow indicates the direction of scan.

Fig.1 Normal Scan

Fig.2 Reverse Scan

PCBA on the bottom side

PCBA on the bottom side

- Fig. 1 Normal scan (pin 3, UD/LR = Low)
- Fig. 2 Reverse scan (pin 3, UD/LR = High)

7. OPTICAL CHARACTERISTICS

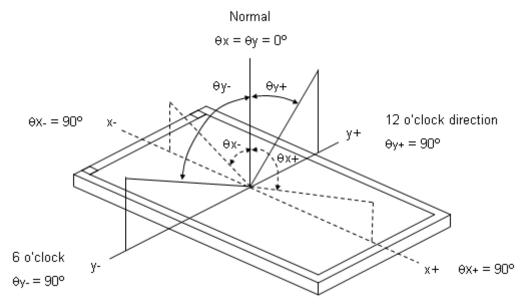
7.1 TEST CONDITIONS

Item	Symbol	Value	Unit					
Ambient Temperature	Ta	25±2	°C					
Ambient Humidity	На	50±10	%RH					
Supply Voltage	According to typical value and tolerance in							
Input Signal	"ELECTRICAL CHARACTERISTICS"							
PWM Duty Ratio	D	100	%					

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown here and all items are measured at the center point of screen unless otherwise noted. The following items should be measured under the test conditions described above and stable conditions shown in Note (5).

Iter	n	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	Red	Rx		0.600	0.650	0.700		
	Neu	Ry		0.290	0.340	0.390		
	Green	Gx		0.600 0.650 0.700 0.290 0.340 0.390 0.270 0.320 0.370 0.565 0.615 0.665 0.100 0.200 0.005 0.055 0.105 0.263 0.313 0.363 0.279 0.329 0.379 0.329 0.379 0.300 0.200 0.200 0.200 0.200 0.200 0.200 0.263 0.313 0.363 0.279 0.329 0.329 0.329				
Color	Green	Gy		0.565	0.615	0.665		(1) (5)
Chromaticity	Blue	Bx	$\theta X=0^{\circ}, \ \theta Y=0^{\circ}$	0.100	0.150	0.200	-	(1), (5)
	blue	Ву	Grayscale Maximum	0.005	0.055	0.105		
	White	Wx		0.263	0.313	0.363		
	vviille	Wy		0.279	0.329	0.379		
Center Lumina	Center Luminance of White			300	350	-	nits	(4), (5)
Contrast	t Ratio	CR		600	800	-	-	(2), (5)
Respons	o Timo	TR	0V 00 0V 00	-	13	18	-	(2)
Respons	e iiiie	TF	$\theta X=0^{\circ}, \ \theta Y=0^{\circ}$	-	12	17	-	(3)
White Va	ariation	δW	θX=0°, θY =0°	80	-	-	%	(5), (6)
	Horizontal	θX+		80	89	-		(1), (5)
Minusia a Amala	Honzontai	θX-	CR≧10	80	89	-	Dog	
Viewing Angle	Vertical	θΥ+	ON≦ IU	80	89	-	Deg.	
	vertical	θΥ-		80	89	-		

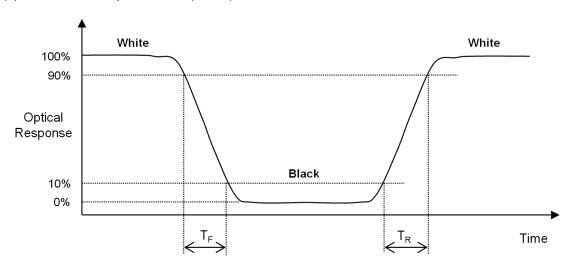

Definition:

Grayscale Maximum: Grayscale 255 (10 bits: grayscale 1023; 8 bits: grayscale 255; 6 bits: grayscale 63)

White: Luminance of Grayscale Maximum (All R,G,B)

Black : Luminance of grayscale 0 (All R,G,B)

Note (1)Definition of Viewing Angle (θx , θy):

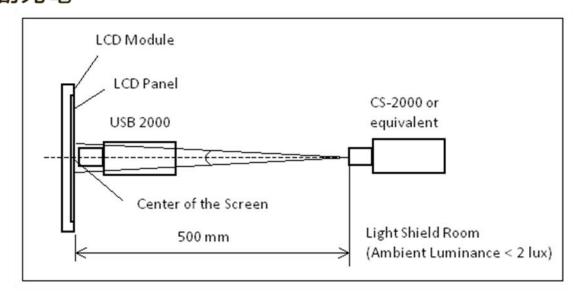


Note (2)Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression at center point.

Contrast Ratio (CR) = White / Black

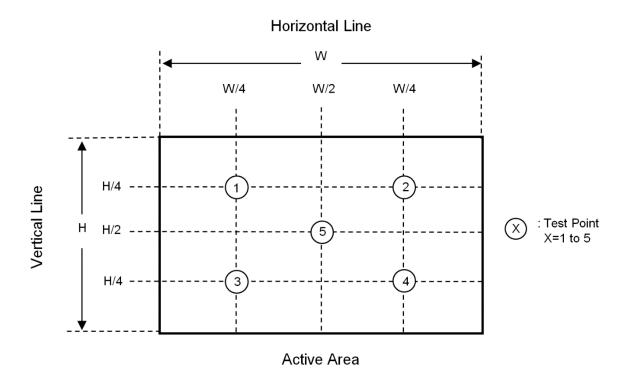
Note (3)Definition of Response Time (T_R, T_F):


Note (4) Definition of Luminance of White (L_C):

Measure the luminance of White at center point.

Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 40 minutes in a windless room. The measurement placement of module should be in accordance with module drawing.



Note (6) Definition of White Variation (δW):

Measure the luminance of White at 5 points.

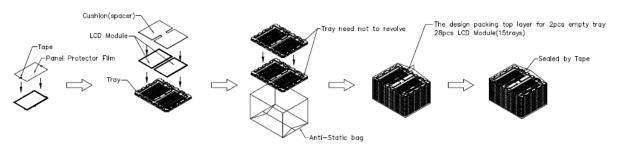
Luminance of White : L(X) , where X is from 1 to 5.

$$\delta W = \frac{\text{Minimum } [L(1) \text{ to } L(5)]}{\text{Maximum } [L(1) \text{ to } L(5)]} \quad X \text{ 100\%}$$

8. RELIABILITY TEST CRITERIA

Test Item	Test Condition	Note					
High Temperature Storage Test	70℃, 240 hours						
Low Temperature Storage Test	-20°C, 240 hours						
Thermal Shock Storage Test	-20°C, 0.5 hour←→60°C, 0.5 hour; 100cycles, 1 hour/cycle)	(1) (2)					
High Temperature Operation Test	60℃, 240 hours	(1),(2) (4),(5)					
Low Temperature Operation Test	-10°ℂ, 240 hours						
High Temperature & High Humidity Operation Test	50℃, RH 80%, 240 hours						
	150pF, 330Ω, 1 sec/cycle						
ESD Test (Operation)	Condition 1 : Contact Discharge, ±8KV	(1), (4)					
	Condition 2 : Air Discharge, ±15KV						
Shock (Non-Operating)	50G, 11ms, half sine wave, 1 time for ± X, ± Y, ± Z direction						
Vibration (Non-Operating)	1.5G, 10 ~ 300 Hz sine wave, 10 min/cycle, 3 cycles each X, Y, Z direction						

- Note (1)There should be no condensation on the surface of panel during test,
- Note (2) Temperature of panel display surface area should be 60°C Max.
- Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.
- Note (4) In the standard conditions, there is no function failure issue occurred. All the cosmetic specification is judged before reliability test.
- Note (5) Before cosmetic and function test, the product must have enough recovery time, at least 24 hours at room temperature.


9. PACKAGING

9.1 PACKING SPECIFICATIONS

- (1) 28pcs LCD modules / 1 Box
- (2) Box dimensions: 435(L) X 350 (W) X 275 (H) mm
- (3) Weight: approximately (12) Kg (28 modules per box)

9.2 PACKING METHOD

(1)Box Dimensions : 435(L)*350(W)*275(H) (2)28 Modules/Carton

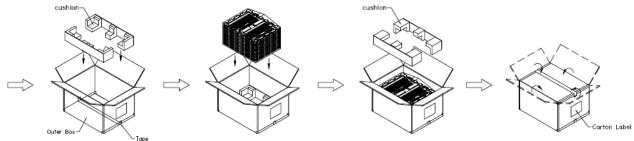


Figure. 9-1 Packing method

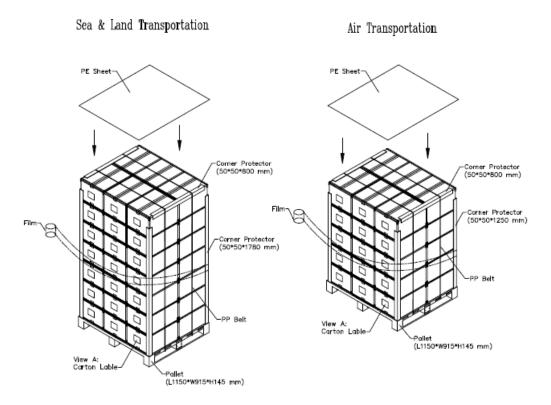


Figure. 9-2 Packing method

9.3 UN-PACKING METHOD

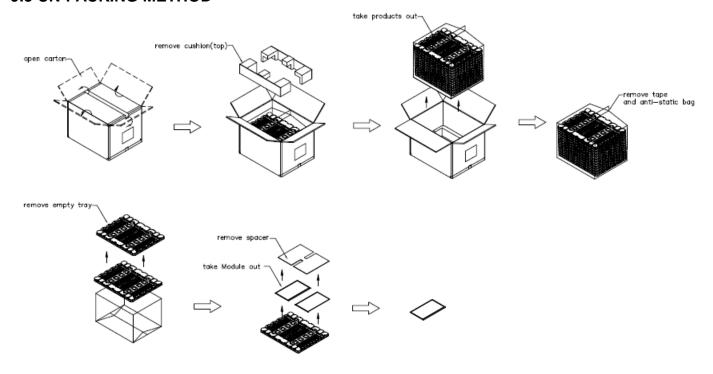


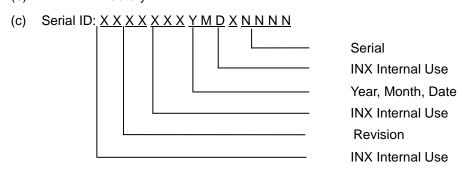
Figure. 9-3 UN-Packing method

Version 2.0 5 May 2023 28 / 48

10. DEFINITION OF LABELS

10.1 INX MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.



Note (1) Safety Compliance(UL logo) will open after C1 version.

(a) Model Name: G101ICE-LM1

(b) * * * * : Factory ID

Serial ID includes the information as below:

(a) Manufactured Date: Year: 1~9, for 2021~2029

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I, O and U

(b) Revision Code: cover all the change

(c) Serial No.: Manufacturing sequence of product

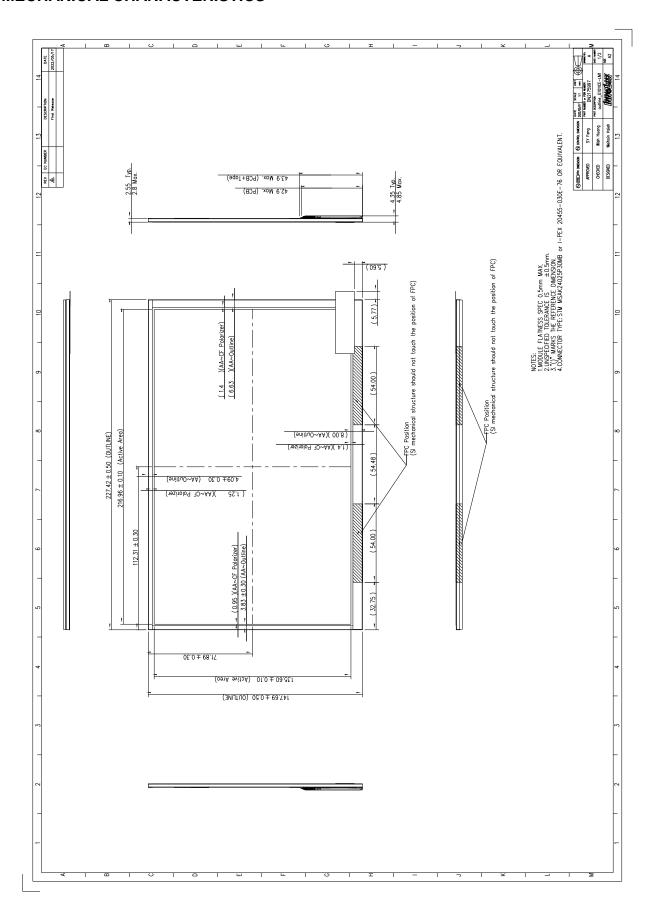
11. PRECAUTIONS

11.1 ASSEMBLY AND HANDLING PRECAUTIONS

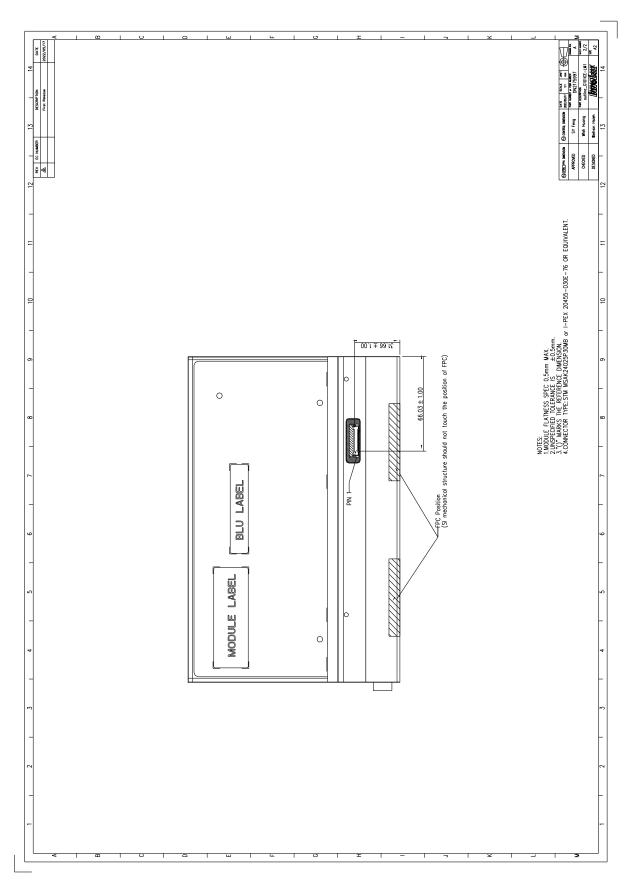
- (1) The module should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the module.
- (2) While assembling or installing modules, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer.
- (3) Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (4) Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched.
- (5) If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction.
- (6) Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time.
- (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap.
- (8) Protect the module from static electricity, it may cause damage to the C-MOS Gate Array IC.
- (9) Do not disassemble the module.
- (10) Do not pull or fold the lamp wire.
- (11) Pins of I/F connector should not be touched directly with bare hands.

11.2 STORAGE PRECAUTIONS

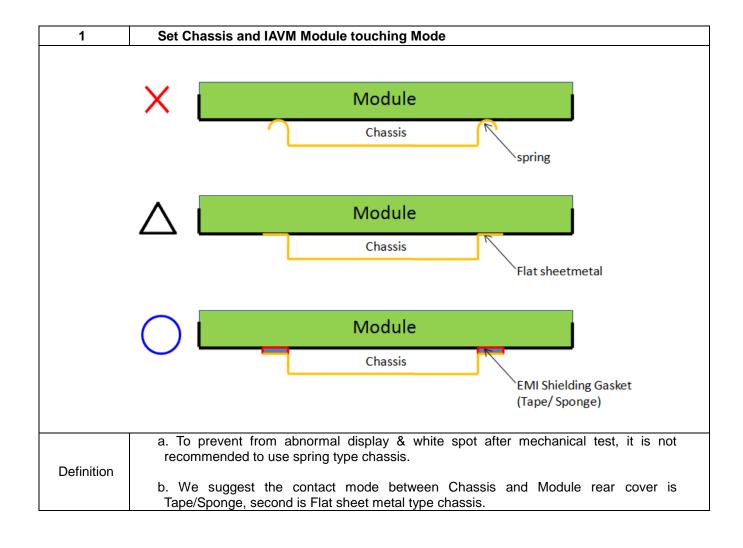
- (1) When storing for a long time, the following precautions are necessary.
 - (a) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 30°C at humidity 50+-10%RH.
 - (b) The polarizer surface should not come in contact with any other object.
 - (c) It is recommended that they be stored in the container in which they were shipped.
 - (d) Storage condition is guaranteed under packing conditions.
 - (e) The phase transition of Liquid Crystal in the condition of the low or high storage temperature will be recovered when the LCD module returns to the normal condition
- (2) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (3) It is dangerous that moisture come into or contacted the LCD module, because the moisture may damage LCD module when it is operating.
- (4) It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly, and the starting voltage of lamp will be higher than the room temperature.

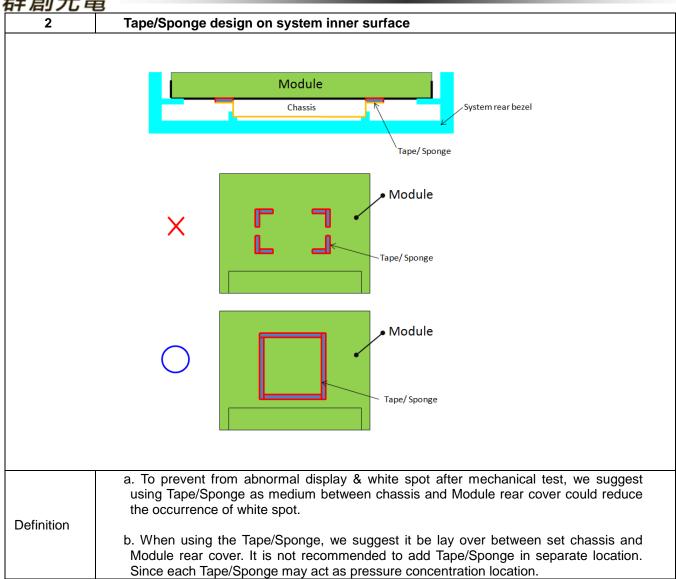


11.3 OTHER PRECAUTIONS

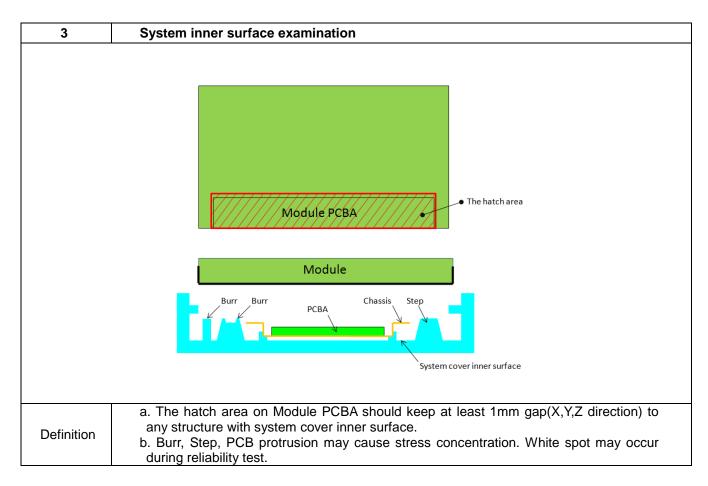

- (1) Normal operating condition
 - (a) Display pattern: dynamic pattern (Real display)(Note) Long-term static display can cause image sticking.
- (2) Operating usages to protect against image sticking due to long-term static display
 - (a) Static information display recommended to use with moving image.
- (3) Abnormal condition just means conditions except normal condition.

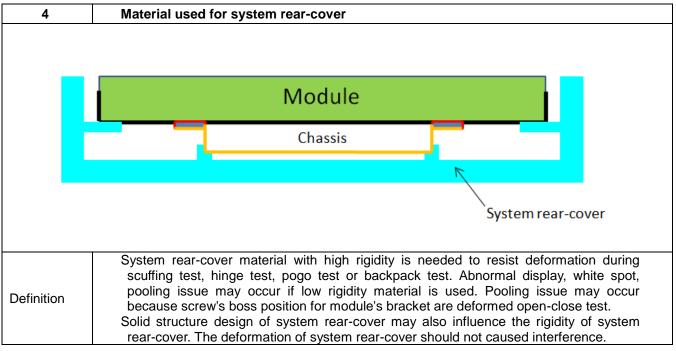
12. MECHANICAL CHARACTERISTICS

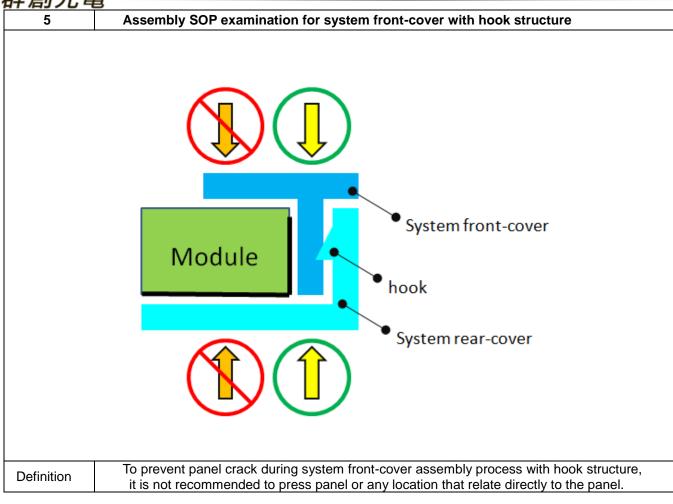


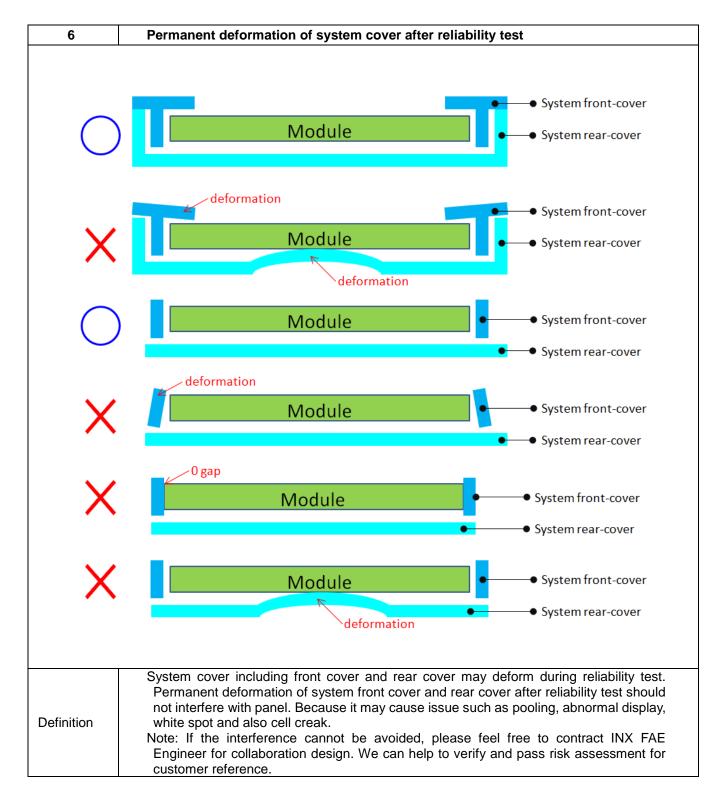


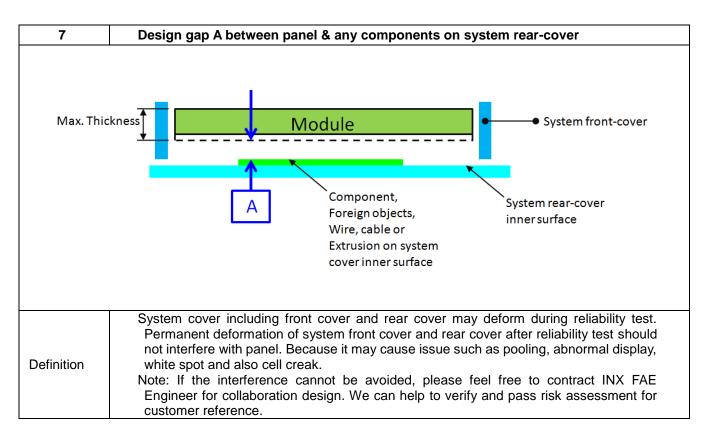
Appendix. SYSTEM COVER DESIGN NOTICE

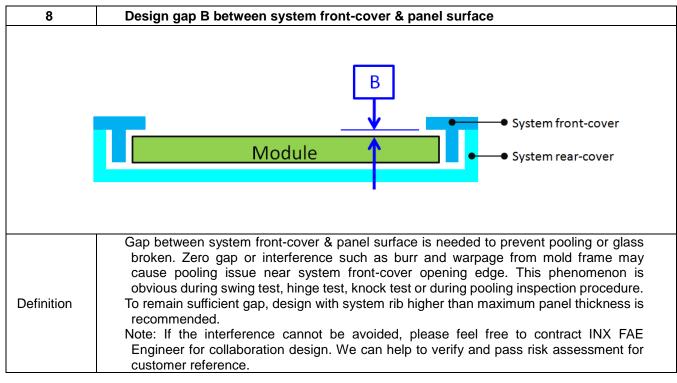




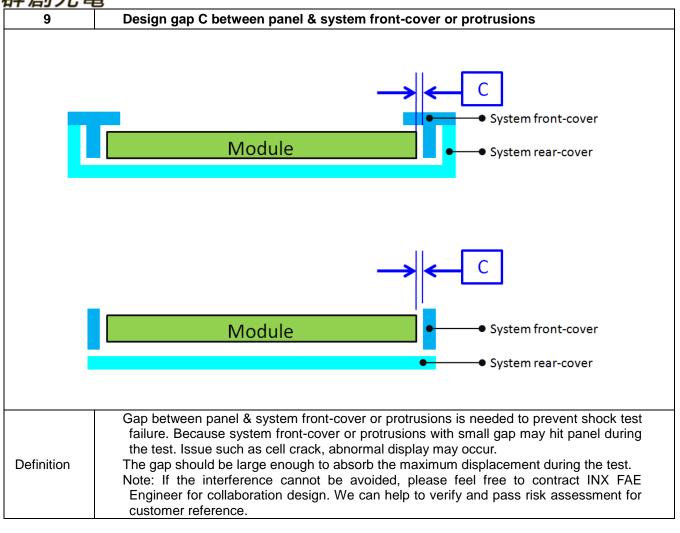

Version 2.0 5 May 2023 35 / 48

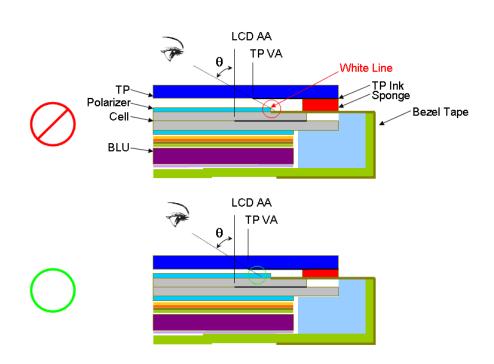



Version 2.0 5 May 2023 37 / 48

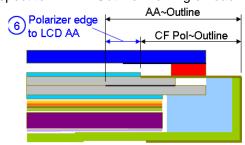


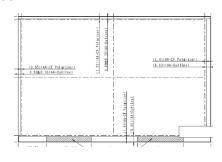
Version 2.0 5 May 2023 38 / 48




Version 2.0 5 May 2023 39 / 48

Version 2.0 5 May 2023 40 / 48


10 Touch Application: TP and LCD Module Combination for White Line Prevention



Parameter consideration for White Line Issue:

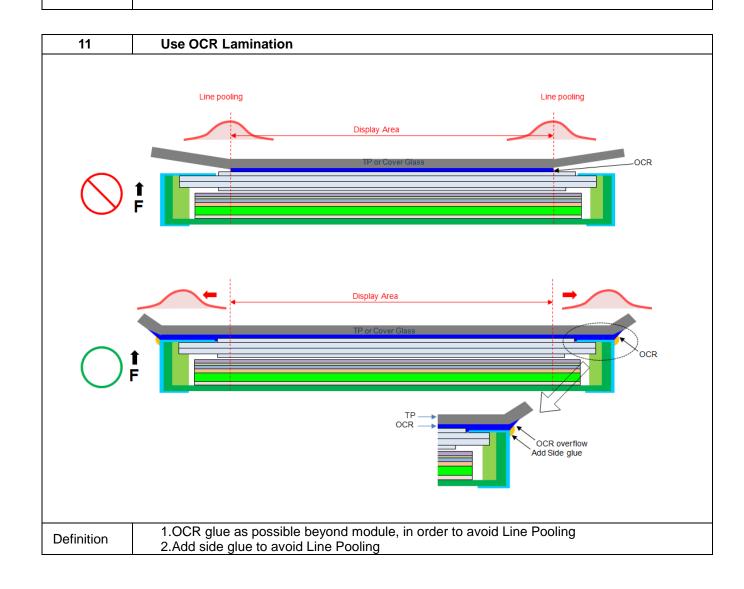
- 1 TP VA to LCD AA distance
- 2 TP Assembly tolerance
- 3 TP Ink Printing tolerance
- 4 Sponge thickness and tolerance
- 5 Inspection/Viewing Angle specification
- 6 Polarizer edge to LCD AA distance and tolerance

Polarizer edge to LCD AA distance can be derived by "AA~Outline" – "CF Pol~Outline" with respect to INX 2D Outline Drawing on each side.

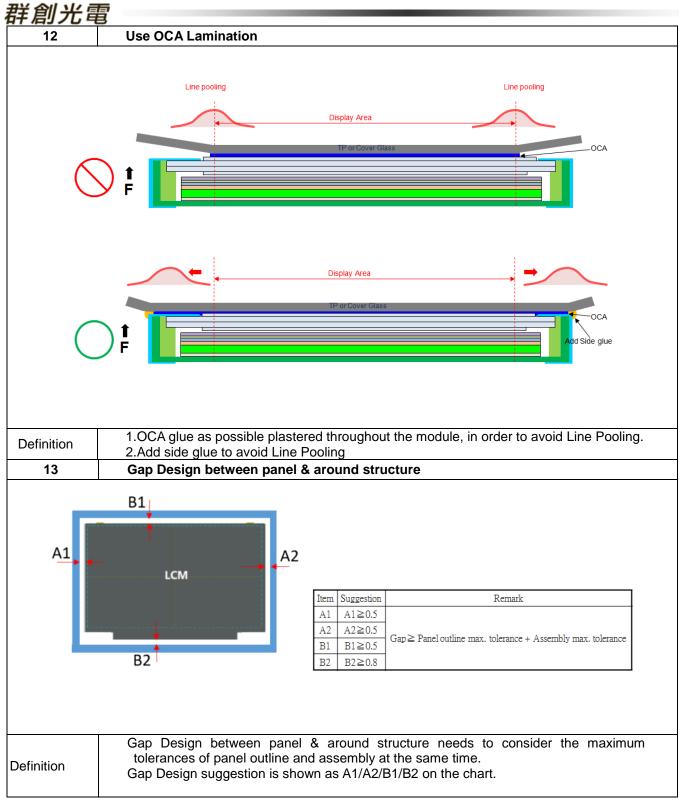
Definition

For using in Touch Application: to prevent White Line appears between TP and LCD module combination, the maximum inspection angle location must not fall onto LCD polarizer edge, otherwise light line near edge of polarizer will be appear.

Parameters such as TP VA to LCD AA distance, TP assembly tolerance, TP Ink printing tolerance, Sponge thickness and tolerance, and Maximum Inspection/Viewing Angle, must be considered with respect to LCD module's Polarizer edge location and tolerance. This consideration must be taken at all four edges separately.


The goal is to find parameters combination that allow maximum inspection angle falls inside polarizer black margin area.

Note: Information for Polarizer edge location and its tolerance can be derived from INX 2D


Outline Drawing ("AA ~Outline" - "CF Pol~Outline").

Note: Please feel free to contact INX FAE Engineer. By providing value of parameters above on each side, we can help to verify and pass the white line risk assessment for customer reference.

Version 2.0 5 May 2023 42 / 48

Version 2.0 5 May 2023 43 / 48

Gap between panel & bezel 2.Gap ≥ 0.1mm 1. Rib structure design holds the gap btw. bezel and panel surface.

Definition

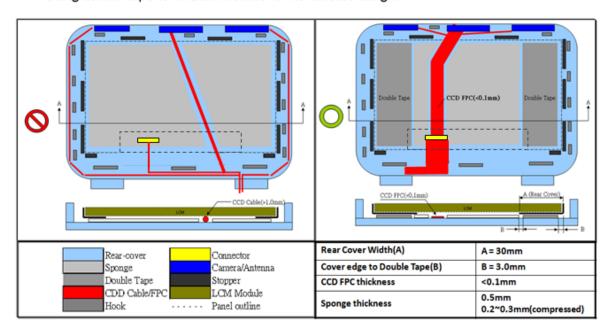
The gap between system bezel & panel surface is needed to prevent pooling or glass broken. Zero gap or interference such as burr and warpage from mold frame may cause pooling issue near system font-cover opening edge. This phenomenon is obvious during swing test, hinge test, knock test, or during pooling inspection procedure.

To remain the sufficient gap, design with system rib higher than maximum panel thickness is recommended.

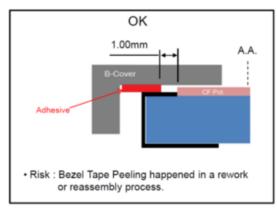
The sufficient gap design is greater or equal to 0.1mm.

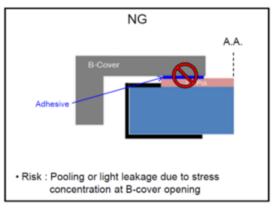
15 Cable routing behind panel Antenna Webcam A Cover ctive Area It is strongly recommended that cables route around the panel outline, not overlap with the panel outline (including PCB). Because issue such as abnormal display & white spot after backpack test, hinge test, twist test or pogo test may occur.

Definition


If any routings across panel outline are needed, we suggest design as below:

- -Using FFC/FPC to replace cables.
- -Routing at the right or left area of panel metal rear.
- -Avoid any routings at the step of panel or A cover.
- -No interference to panel.
- -It should not overlap TCON, COF/FPC, Driver IC


6 Interference examination of antenna cable and Web Cam wire


- · To prevent panel damage, we suggest using CCD FPC to replace CCD cable
- · Using double tape to fix LCM module for no bracket design.

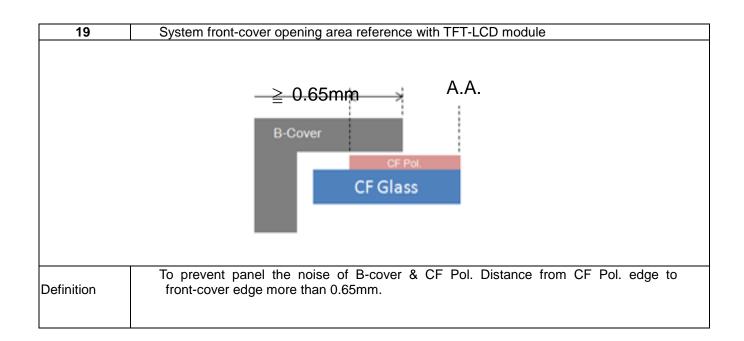
Definition	If the antenna cable or Web Cam wire must overlap with the panel outline, both sides of the antenna cable or Web Cam wire must have a sponge(Sponge material can not contain NH3) and sponge require higher antenna cable or Web Cam wire.(Antenna cable or Web Cam wire should not overlap with TCON,COF/FPC,Driver IC) Note: If the interference can not be avoided, please feel free to contact INX FAE Engineer for collaboration design. We can help to verify and pass risk assessment for customer reference.
Definition	To prevent peeling the bezel tape in rework process. The length of double tape is 30 – (A+B), A is bezel tape length and B is the double tape attaching tolerance. Ex :A :2mm, B:2mm, the length of double tape is 30-(2+2)=26mm.

17 Adhesive design between panel & bezel

To prevent panel crack during system front-cover assembly process with double tape design, When system applied adhesive between B-Cover and LCD module, please

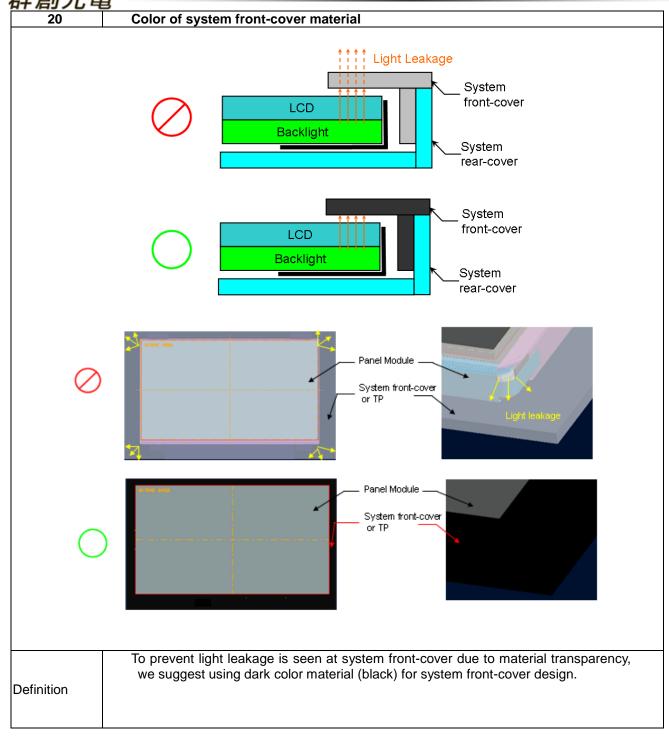
design a distance 1.00mm between B-Cover's adhesive and CF pol. Do **NOT** put adhesive on CF pol. Adhesive material need be qualified to prevent from doing damage to cell tape after

rework.


Adhesive material need be qualified to prevent abnormal noise when hinge swinging test.

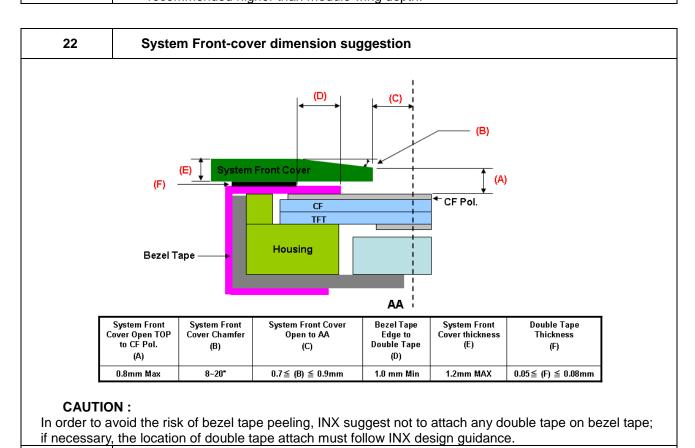
18 System front-cover assembly reference with Double tape design

O.1 mm A.A.


B-Cover

To prevent system front-cover peeling at double tape contact area, A gap between B-Cover & CF-Pol. Is 0.1mm min.

Version 2.0 5 May 2023 46 / 48



Version 2.0 5 May 2023 47 / 48

Definition

PRODUCT SPECIFICATION

Design Gap between System Front-cover & TOD LCD module surface System Front Cover Gap A CF Pol. CF **TFT** Housing Bezel Tape AA $0.15 \leq \text{Gap A} \leq 0.20 \text{ mm}$ Gap A between system front-cover & TOD LCD module surface is needed to prevent pooling or glass broken. Zero gap or interference such as burr and warpage from mold frame may cause pooling issue near system font-cover opening edge. This Definition phenomenon is obvious during swing test, hinge test, knock test, or during pooling inspection procedure. To remain sufficient gap for first graph, design value for front-cover depth is recommended higher than module wing depth.

recommended, Recommended dimension is shown in above graph.

To achieve better touch sensibility, INX suggests to follow design value as