

- Tentative Specification
- Preliminary Specification
- Approval Specification

MODEL NO.: G154ICE

SUFFIX: LH2

Customer:**APPROVED BY SIGNATURE****Name / Title**

Note

Please return 1 copy for your confirmation with your signature and comments.

Approved By	Checked By	Prepared By
林秋森	吳承旻	許秋茵

CONTENTS

1. GENERAL DESCRIPTION	5
1.1 OVERVIEW	5
1.2 FEATURE	5
1.3 APPLICATION	5
1.4 GENERAL SPECIFICATIONS	5
1.5 MECHANICAL SPECIFICATIONS	6
2. ABSOLUTE MAXIMUM RATINGS	7
2.1 ABSOLUTE RATINGS OF ENVIRONMENT	7
2.2 ELECTRICAL ABSOLUTE RATINGS	8
2.2.1 TFT LCD MODULE	8
2.2.2 BACKLIGHT UNIT	8
3. ELECTRICAL CHARACTERISTICS	9
3.1 TFT LCD MODULE	9
3.2 BACKLIGHT UNIT	11
4. BLOCK DIAGRAM	12
4.1 TFT LCD MODULE	12
5. INPUT TERMINAL PIN ASSIGNMENT	13
5.1 TFT LCD MODULE	13
5.2 COLOR DATA INPUT ASSIGNMENT	15
5.2.1 FOR 6-BITS	15
5.2.2 FOR 8-BITS	16
6. INTERFACE TIMING	17
6.1 INPUT SIGNAL TIMING SPECIFICATIONS	17
6.2 POWER ON/OFF SEQUENCE	20
6.3 SCANNING DIRECTION	22
7. OPTICAL CHARACTERISTICS	23
7.1 TEST CONDITIONS	23
7.2 OPTICAL SPECIFICATIONS	23
8. RELIABILITY TEST CRITERIA	26
9. PACKAGING	27
9.1 PACKING SPECIFICATIONS	27
9.2 PACKING METHOD	27
9.3 UN-PACKING METHOD	28
10. DEFINITION OF LABELS	29
10.1 INX MODULE LABEL	29

11. PRECAUTIONS	30
11.1 ASSEMBLY AND HANDLING PRECAUTIONS.....	30
11.2 STORAGE PRECAUTIONS.....	31
11.3 OTHER PRECAUTIONS.....	31
12. MECHANICAL CHARACTERISTICS	32
Appendix. SYSTEM COVER DESIGN NOTICE	34

REVISION HISTORY

Version	Date	Page	Description
2.0	Sep,30,2024	All	Spec Ver 2.0 was first issued.

1. GENERAL DESCRIPTION

1.1 OVERVIEW

G154ICE-LH2 is a 15.4" TFT Liquid Crystal Display IA module with LED Backlight units and 30 pins LVDS interface. This module supports 1280 x 800 WXGA mode and can display 16.7M / 262K colors.

The PSWG is to establish a set of displays with standard mechanical dimensions and select electrical interface requirements for an industry standard 15.4" WXGA LCD panel and the LED driving device for Backlight is built in PCBA.

1.2 FEATURE

- WXGA (1280 x 800 pixels) resolution
- DE (Data Enable) only mode
- LVDS Interface with 1pixel/clock
- PSWG (Panel Standardization Working Group)
- Wide operating temperature.
- RoHS compliance

1.3 APPLICATION

- TFT LCD Monitor
- Factory Application
- Amusement

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	331.2(H) x 207.0(V) (15.4" diagonal)	mm	(1)
Driver Element	a-Si TFT active matrix	-	-
Pixel Number	1280 x R.G.B x 800	pixel	-
Pixel Pitch	0.25875(H) x 0.25875(W)	mm	-
Pixel Arrangement	RGB vertical Stripe	-	-
Display Colors	16.7M / 262K	color	-
Display Mode	Normally Black	-	-
Surface Treatment	Hard Coating (3H), Anti-Glare	-	-
Module Power Consumption	18	W	Typ.

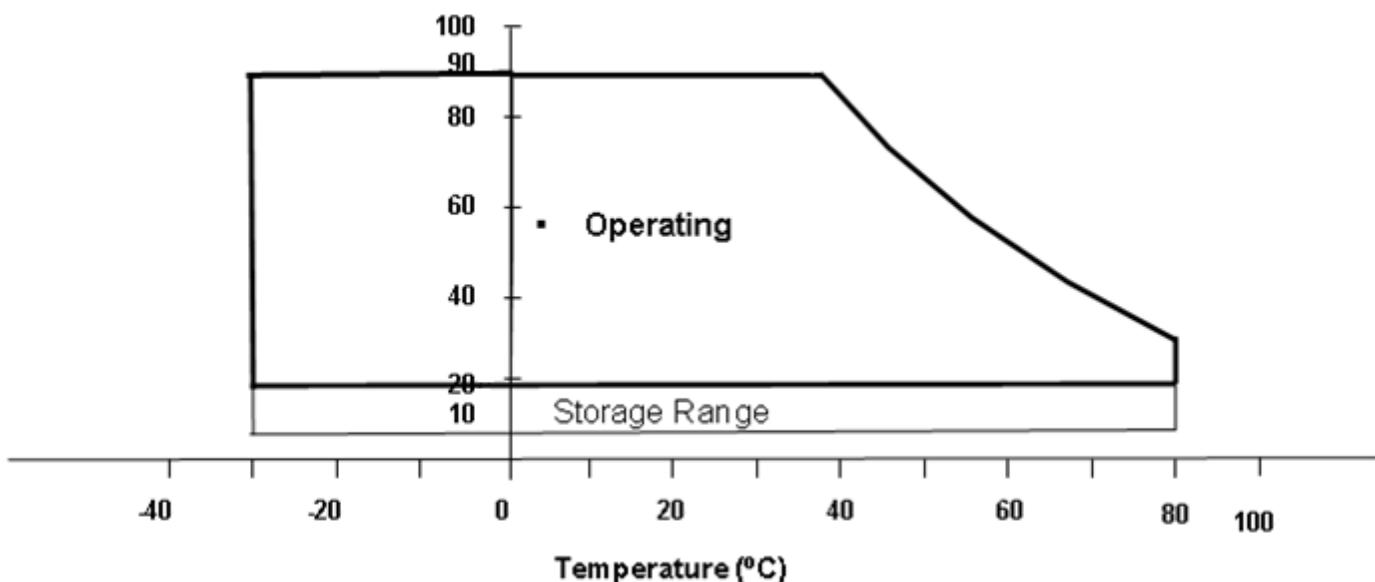
1.5 MECHANICAL SPECIFICATIONS

Item		Min.	Typ.	Max.	Unit	Note
Module Size	Horizontal(H)	351.5	352	352.5	mm	(1)
	Vertical(V)	229.5	230	230.5	mm	
	Depth(D)	13.13	13.63	14.13	mm	
Bezel Area	Horizontal	334.2	334.5	334.8	mm	-
	Vertical	210	210.3	210.6	mm	
Active Area	Horizontal	---	331.2	---	mm	
	Vertical	---	207	---	mm	
Weight		755	786	818	g	

Note(1) Please refer to the attached drawings for more information of front and back outline dimensions.

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT


Item	Symbol	Value		Unit	Note
		Min.	Max.		
Operating Ambient Temperature	T_{OP}	-30	+80	°C	
Storage Temperature	T_{ST}	-30	+80	°C	(1)(2)

Note(1)

- (a) 90 %RH Max.
- (b) Wet-bulb temperature should be 39 °C Max.
- (c) No condensation.

Note(2) Panel surface temperature should be 0°C min. and 80°C max under $V_{cc}=3.3V$, $f_r=60Hz$, typical LED string current, 25 °C ambient temperature, and no humidity control . Any condition of ambient operating temperature ,the surface of active area should be keeping not higher than 80°C.

Relative Humidity (%RH)

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

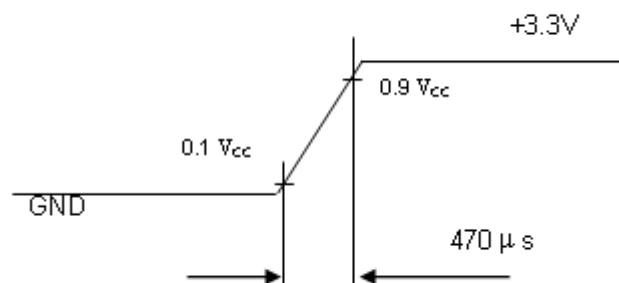
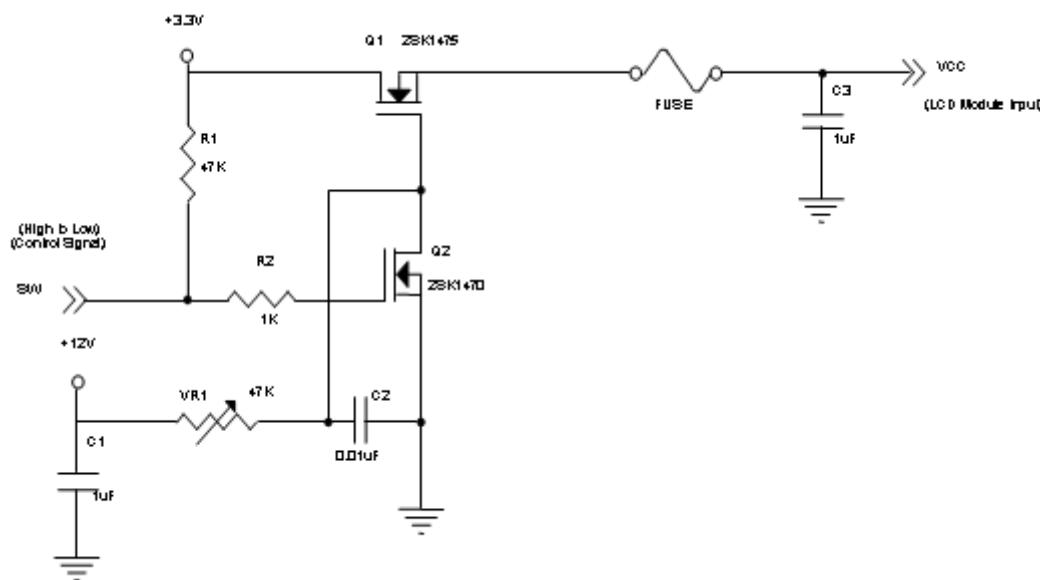
Item	Symbol	Value		Unit	Note
		Min.	Max.		
Power Supply Voltage	V _C C	-0.3	4	V	(1)
Logic Input Voltage	V _{IN}	-0.3	4	V	

2.2.2 BACKLIGHT UNIT

Item	Symbol	Value		Unit	Note
		Min.	Max.		
Converter Voltage	V _i	-0.3	18	V	(1) , (2)
Enable Voltage	EN	-0.3	5.5	V	
Backlight Adjust	Dimming	-0.3	5.5	V	

Note(1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note(2) Specified values are for LED (Refer to 3.2 for further information).

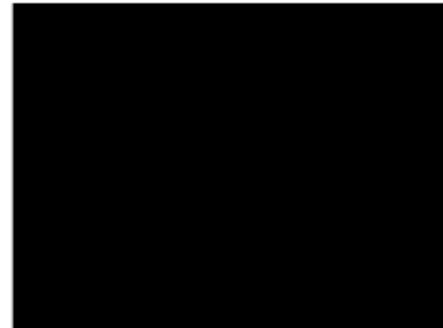


3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

Parameter	Symbol	Value			Unit	Note
		Min.	Typ.	Max.		
Power Supply Voltage	V _{CC}	3.0	3.3	3.6	V	-
Ripple Voltage	V _{RP}	-	-	100	mVp-p	
Inrush Current	I _{INRUSH}	-	-	2.0	A	(2)
Power Supply Current	White	I _{CC}	-	790	mA	(3)a
	Black		-	410	mA	(3)b
LVDS differential input voltage	V _{id}	200	-	600	mV	
LVDS common input voltage	V _{ic}	1.0	1.2	1.4	V	
Differential Input Voltage for LVDS Receiver Threshold	"H" Level	V _{IH}	-	100	mV	-
	"L" Level	V _{IL}	-100	-	-	mV
Terminating Resistor	R _T	-	100	-	Ohm	-

Note(1) The module should be always operated within above ranges.

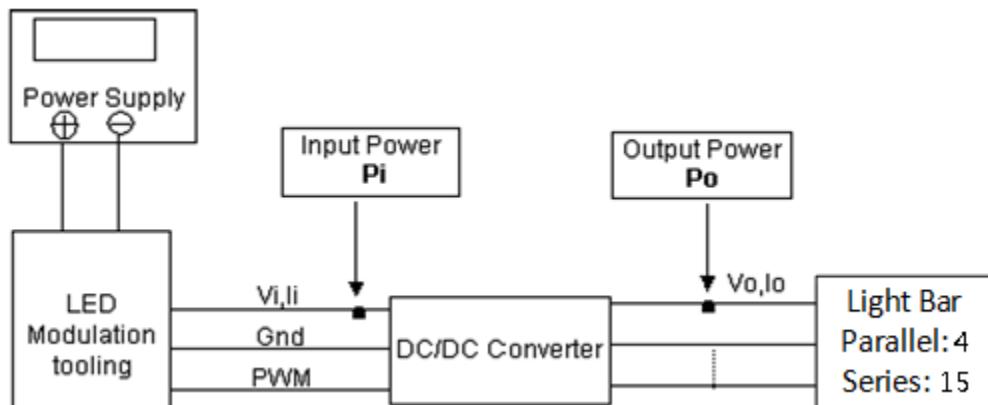
Note(2) Measurement Conditions:


Note(3) The specified power supply current is under the conditions at VDD =3.3V, Ta = 25 ± 2 °C, DC Current and fv = 60 Hz, whereas a power dissipation check pattern below is displayed.

a. White Pattern

Active Area

b. Black Pattern

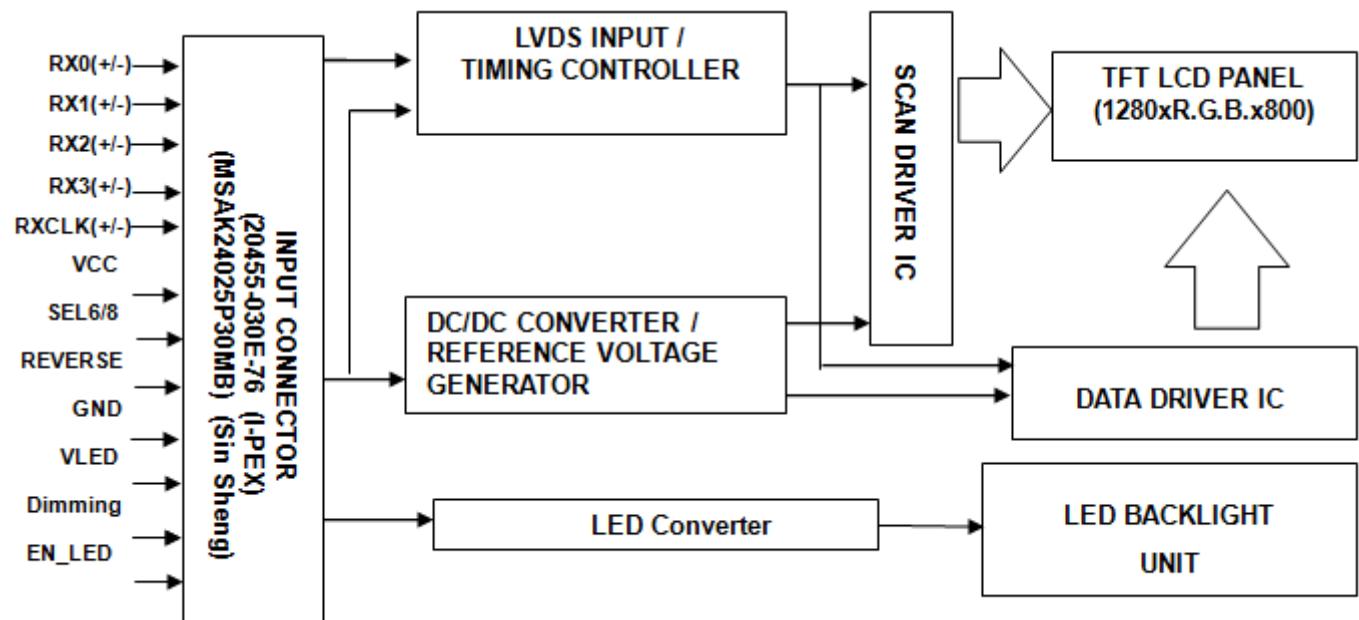


Active Area

3.2 BACKLIGHT UNIT

Parameter	Symbol	Value			Unit	Note
		Min.	Typ.	Max.		
Converter Input Voltage	Vi	10.8	12.0	13.2	VDC	(Duty 100%)
Converter Input Ripple Voltage	ViRP	-	-	500	mV	
Converter Input Current	li	1.1	1.3	1.5	ADC	@ Vi = 12V (Duty 100%)
Converter Inrush Current	liRUSH	-	-	5.0	A	@ Vi rising time=10ms (Vi=12V)
Input Power Consumption	Pi	13	15.4	17.0	W	(1)
EN Control Level	Backlight on	ENLED (BLON)	2.5	3.3	5.0	V
	Backlight off		0	-	0.3	V
PWM Control Level	PWM High Level	Dimming (E_PWM)	2.5	-	5.0	V
	PWM Low Level		0	-	0.15	V
PWN Noise Range	VNoise	-	-	0.1	V	
PWM Control Frequency	fPWM	190	200	20k	Hz	(3)
PWM Dimming Control Duty Ratio	-	5	-	100	%	(3), @ 190Hz < fPWM < 1kHz
		20	-	100	%	(3), @ 1kHz ≤ fPWM < 20kHz
LED Life Time	LLED	50,000		-	Hrs	(2)

Note(1) LED current is measured by utilizing a high frequency current meter as shown below:



Note(2) The lifetime of LED is estimated data and defined as the time when it continues to operate under the conditions at $T_a = 25 \pm 2$ °C and Duty 100% until the brightness becomes $\leq 50\%$ of its original value. Operating LED at high temperature condition will reduce life time and lead to color shift.

Note(3) At 190 ~1kHz PWM control frequency, duty ratio range is restricted from 5% to 100%. 1K ~20kHz PWM control frequency, duty ratio range is restricted from 20% to 100%. If PWM control frequency is applied in the range from 1KHz to 20KHz, The “non-linear” phenomenon on the Backlight Unit may be found. So It's a suggestion that PWM control frequency should be less than 1KHz.

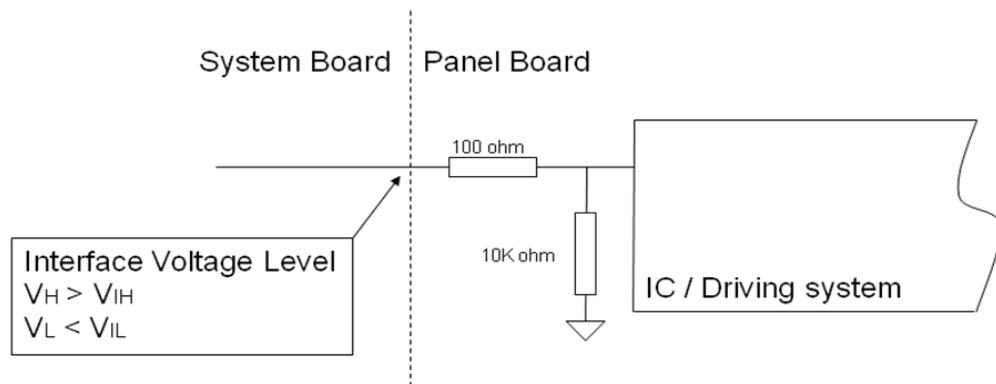
4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

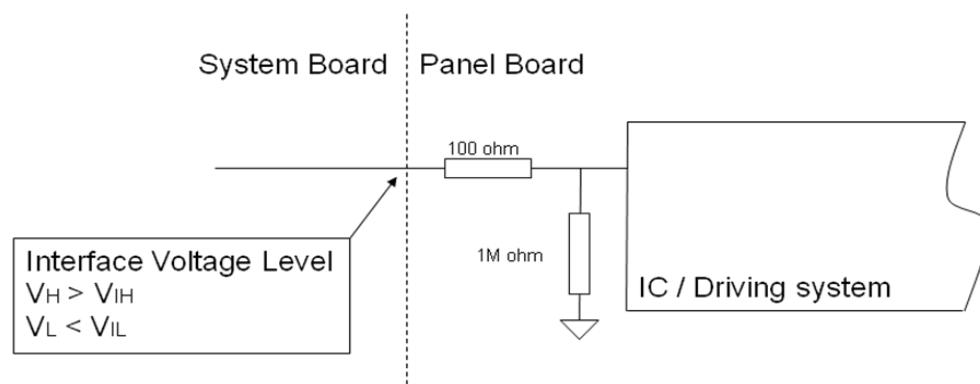
5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

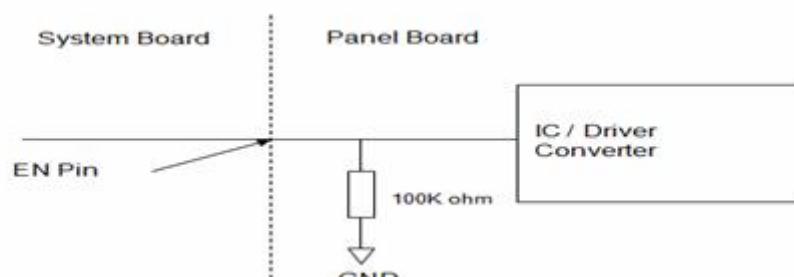
Pin No.	Symbol	Function	Polarity	Note
1	12V	LED Power supply		LED converter power
2	12V	LED Power supply		
3	12V	LED Power supply		
4	12V	LED Power supply		
5	ENLED	Enable Pin		
6	Dimming	Backlight Adjust		
7	GND	Ground		
8	GND	Ground		
9	VCC	Power supply +3.3V		System power
10	VCC	Power supply +3.3V		System power
11	GND	Ground		
12	GND	Ground		
13	RX0-	Differential Data Input, CH0 (Negative)	Negative	
14	RX0+	Differential Data Input, CH0 (Positive)	Positive	
15	GND	Ground		
16	RX1-	Differential Data Input, CH1 (Negative)	Negative	
17	RX1+	Differential Data Input , CH1 (Positive)	Positive	
18	GND	Ground		
19	RX2-	Differential Data Input , CH2 (Negative)	Negative	
20	RX2+	Differential Data Input , CH2 (Positive)	Positive	
21	GND	Ground		
22	RXCLK-	Differential Clock Input (Negative)	Negative	
23	RXCLK+	Differential Clock Input (Positive)	Positive	
24	GND	Ground		
25	RX3-	Differential Data Input, CH3 (Negative)	Negative	
26	RX3+	Differential Data Input, CH3 (Positive)	Positive	
27	GND	Ground		
28	SEL6/8	LVDS 6/8 bit select function control, Low or NC → 6 bit Input Mode High → 8 bit Input Mode		(3)
29	Reverse	Scanning direction control Low or NC → normal display (default) High → display with 180 degree rotation		(3)
30	GND	Ground		

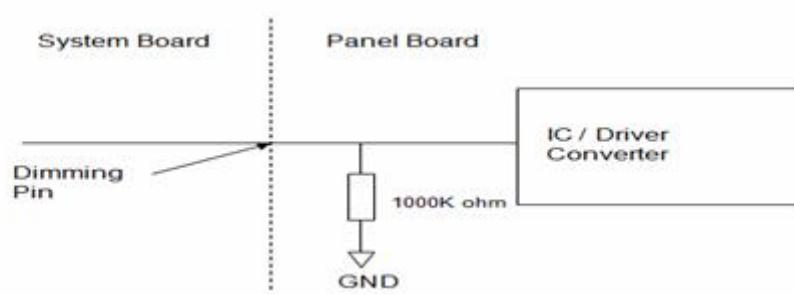

Note(1) LVDS Connector type: STM_MSAK24025P30MB7 / I-PEX_20455-030E-76 or equivalent

Current Rating: AC/DC 100V 0.8A(AWG#36)


Note(2) User's connector Part No:I-PEX 20453-030T-03 or equivalent.

Note(3) "Low" stands for 0V. "High" stands for 3.3V. "NC" stands for "No Connected".


REVERSE


SEL6/8

EN Pin

Dimming Pin

5.2 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input.

5.2.1 FOR 6-BITS

Color		Data Signal																	
		Red						Green						Blue					
		R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	B4	B3	B2	B1	B0
Basic Colors	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	1	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Gray Scale Of Red	Red(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	:	:	:	:	:	:	:	0	0	0	0	0	0	0	0	0	0	0	0
	Red(61)	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray Scale Of Green	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
	:	:	:	:	:	:	:	:	:	:	:	:	0	0	0	0	0	0	0
	Green(61)	0	0	0	0	0	0	1	1	1	1	1	0	1	0	0	0	0	0
	Green(62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green(63)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Blue(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray Scale Of Blue	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(61)	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	1
	Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0
	Blue(63)	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1

Note(1)0: Low Level Voltage, 1: High Level Voltage

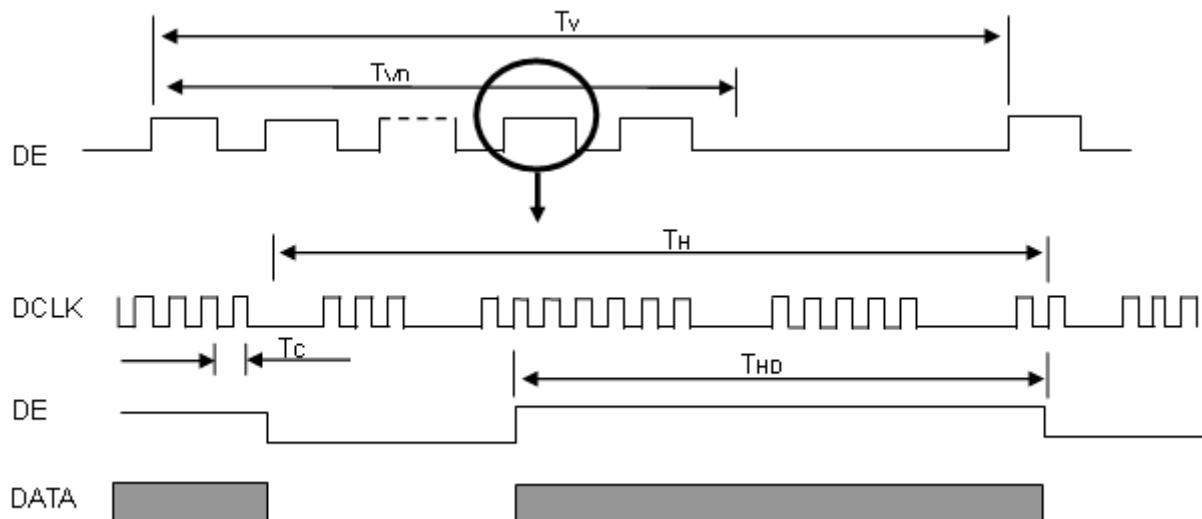
5.2.2 FOR 8-BITS

Color		Data Signal																							
		Red						Green						Blue											
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	B7	B6	B5	B4	B3	B2	B1	B0
Basic Colors	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	
	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Gray Scale Of Red	Red(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Red(2)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	:	:	:	:	:	:	:	:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Red(253)	1	1	1	1	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Red(254)	1	1	1	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Gray Scale Of Green	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	
	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	
	:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Green(253)	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	
	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	
	Blue(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
Gray Scale Of Blue	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
	:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	:	
	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0	
	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	

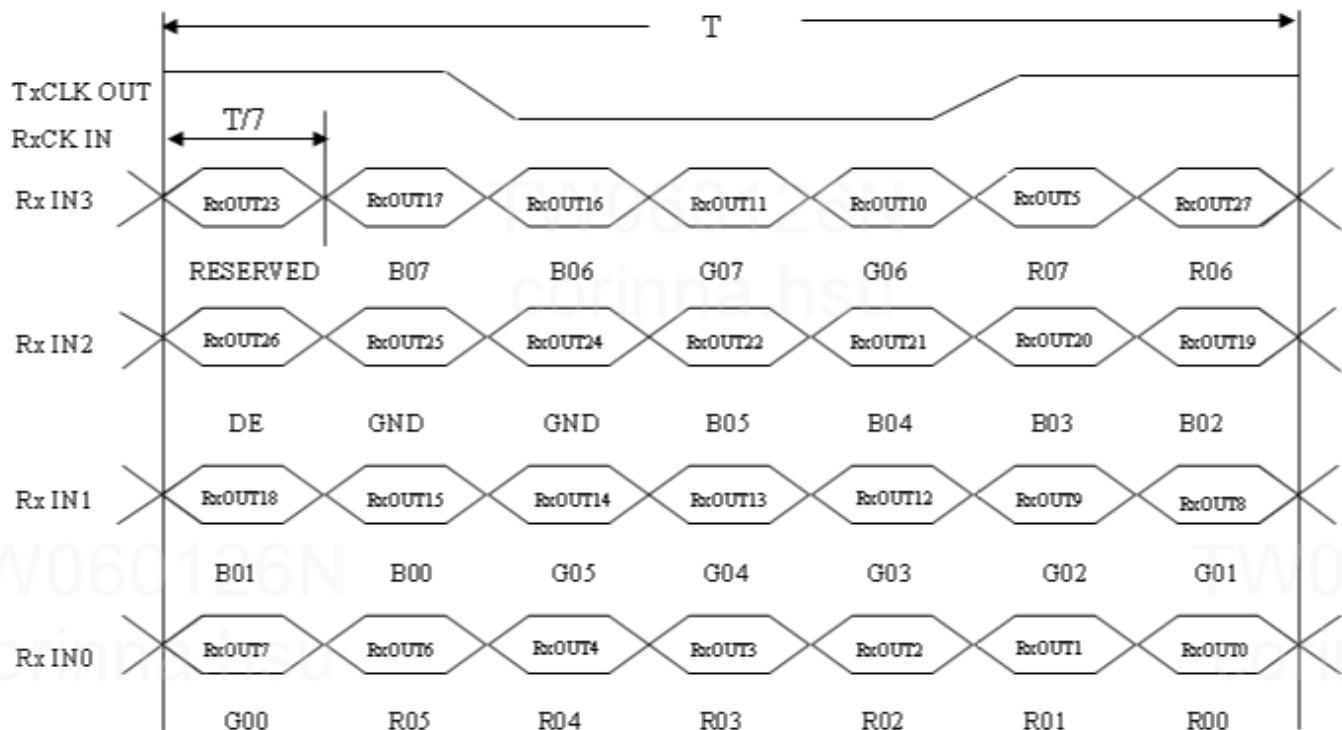
Note(1)0: Low Level Voltage, 1: High Level Voltage

6. INTERFACE TIMING

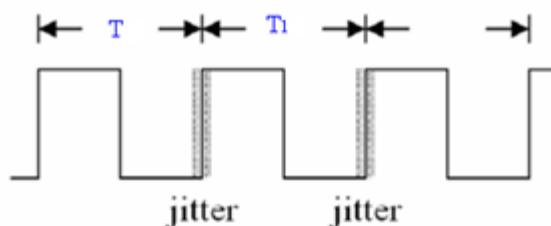
6.1 INPUT SIGNAL TIMING SPECIFICATIONS

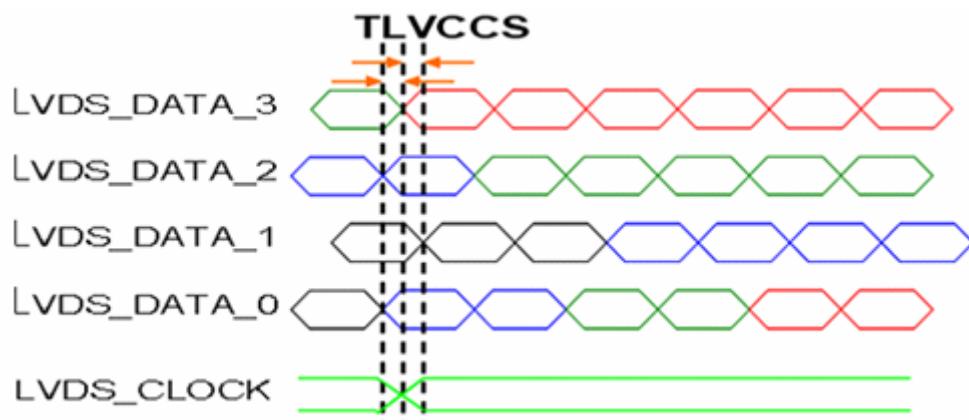

The input signal timing specifications are shown as the following table and timing diagram.

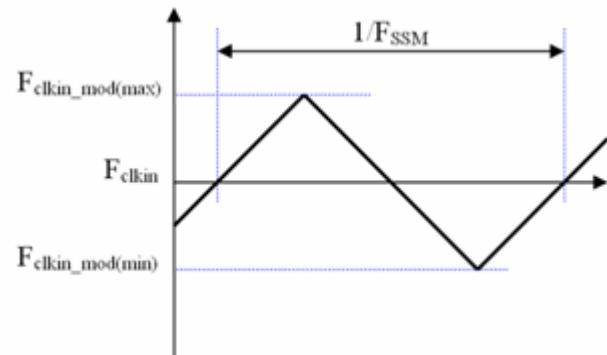
Signal	Item	Symbol	Min.	Typ.	Max.	Unit	Note
LVDS Clock	Frequency	F_r	66	71.1	84	MHz	-
	Period	T_c	13.41	14.08	14.82	ns	
	Input cycle to cycle jitter	T_{rcl}	---	---	200	ns	(a)
	Input Clock to data skew	TLVCCS	$-0.02*T_c$	-	$0.02*T_c$	ps	(b)
	Spread spectrum modulation range	F_{clkin_mod}	-	-	$1.02*F_c$	MHz	(c)
	Spread spectrum modulation frequency	F_{SSM}	-	-	200	KHz	
Vertical Display Term	Frame Rate	F_r		60		Hz	$T_v=T_{vd}+T_{vb}$
	Total	T_v	810	823	1000	T_h	-
	Active Display	T_{vd}	800	800	800	T_h	-
	Blank	T_{vb}	T_v-T_{vd}	23	T_v-T_{vd}	T_h	-
Horizontal Display Term	Total	T_h	1360	1440	1600	T_c	$T_h=T_{hd}+T_{hb}$
	Active Display	T_{hd}	1280	1280	1280	T_c	-
	Blank	T_{hb}	T_h-T_{hd}	160	T_h-T_{hd}	T_c	-


Note(1) Because this module is operated by DE only mode, Hsync and Vsync input signals should be set to low logic level or ground. Otherwise, this module would operate abnormally.

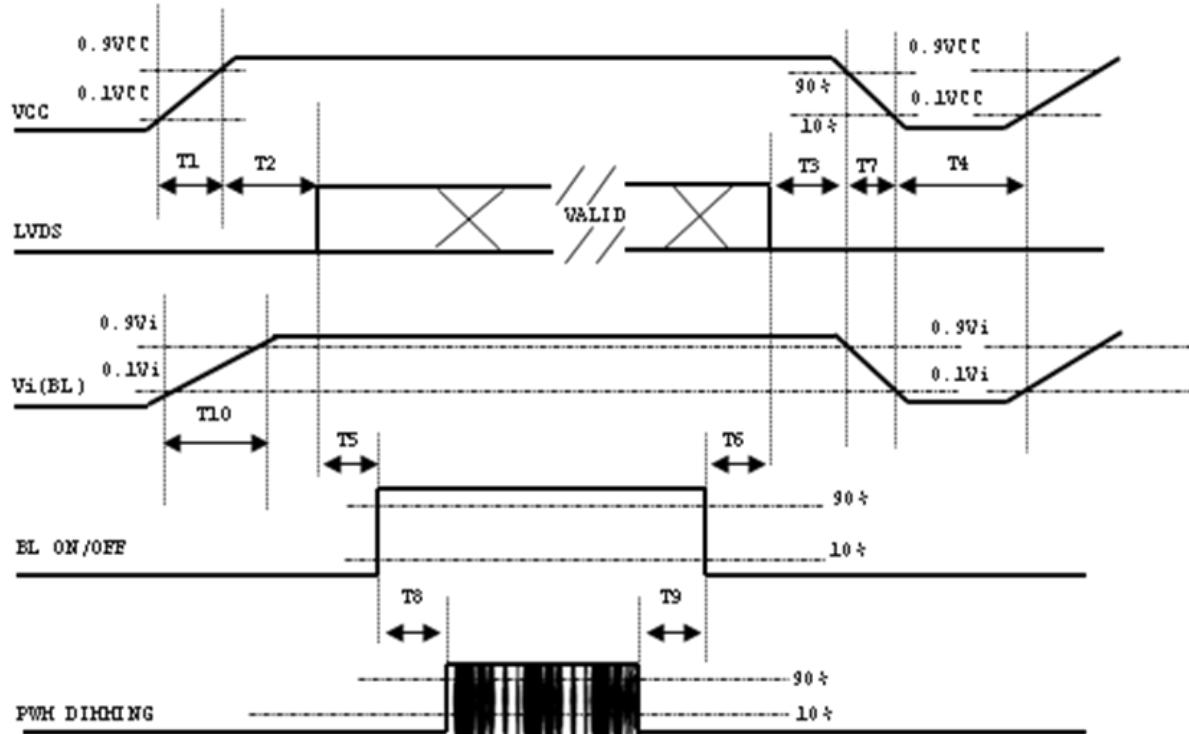
Note(2) The $T_v(T_{vd}+T_{vb})$ must be integer, otherwise, the module would operate abnormally.


INPUT SIGNAL TIMING DIAGRAM


TIMING DIAGRAM of LVDS


Note(a) The input clock cycle-to-cycle jitter is defined as below figures. $T_{cl} = |T_1 - T_2|$

Note(b) Input Clock to data skew is defined as below figures.



Note(c) The SSCG (Spread spectrum clock generator) is defined as below figures.

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD assembly, the power on/off sequence should be as the diagram below.

Parameter	Value			Units
	Min	Typ	Max	
T1	0.5	-	10	ms
T2	0	-	50	ms
T3	0	-	50	ms
T4	500	-	-	ms
T5	450	-	-	ms
T6	200	-	-	ms
T7	10	-	100	ms
T8	10	-	-	ms
T9	10	-	-	ms
T10	20	-	50	ms

Note(1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.

Note(2) When the backlight turns on before the LCD operation of the LCD turns off, the display may momentarily become abnormal screen.

Note(3) In case of VCC = off level, please keep the level of input signals on the low or keep a high impedance.

Note(4) T4 should be measured after the module has been fully discharged between power off and on period.

Note(5) Interface signal shall not be kept at high impedance when the power is on.

Note(6) INX won't take any responsibility for the products which are damaged by the customers not following the Power Sequence.

Note(7) There might be slight electronic noise when LCD is turned off (even backlight unit is also off). To avoid this symptom, we suggest "Vcc falling timing" to follow "T7 spec"

6.3 SCANNING DIRECTION

The following figures show the image see from the front view. The arrow indicates the direction of scan.

Fig.1 Normal Scan

PCBA on the top side

Fig.2 Reverse Scan

PCBA on the top side

Fig. 1 Normal scan (pin 29, REVERSE = LOW or NC)

Fig. 2 Reverse scan (pin 29, REVERSE = HIGH)

7. OPTICAL CHARACTERISTICS

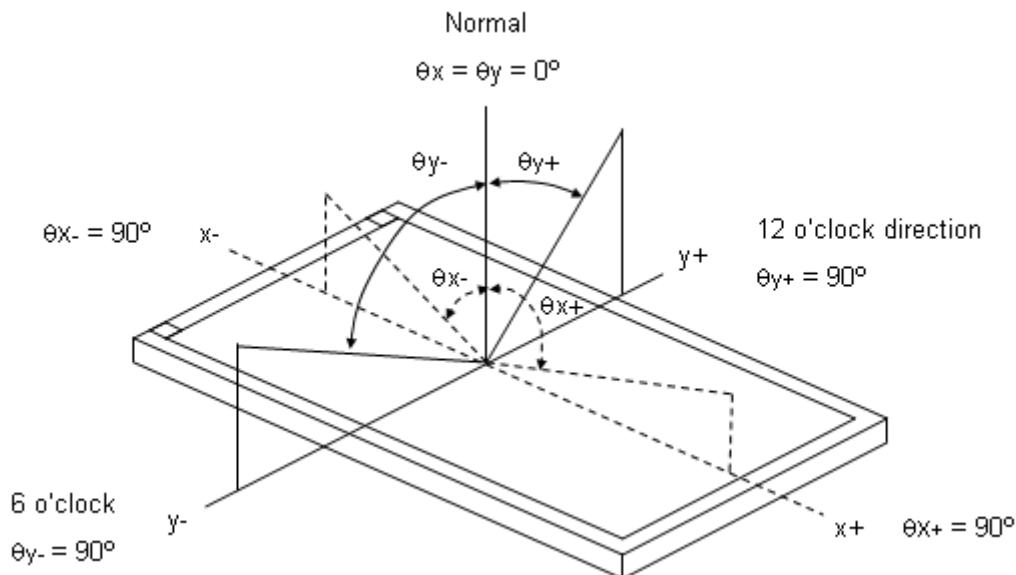
7.1 TEST CONDITIONS

Item	Symbol	Value	Unit
Ambient Temperature	T _a	25±2	°C
Ambient Humidity	H _a	50±10	%RH
Supply Voltage	According to typical value and tolerance in "ELECTRICAL CHARACTERISTICS"		
Input Signal			
PWM Duty Ratio	D	100	%

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown here and all items are measured at the center point of screen unless otherwise noted. The following items should be measured under the test conditions described above and stable conditions shown in Note (5).

Item	Symbol	Condition	Min.	Typ.	Max.	Unit	Note	
Color Chromaticity	Red	$\theta X=0^\circ, \theta Y=0^\circ$ Grayscale Maximum	0.597	0.647	0.697	-	(1), (5)	
			0.290	0.340	0.390			
	Green		0.271	0.321	0.371			
			0.557	0.607	0.657			
	Blue		0.102	0.152	0.202			
			0.000	0.050	0.100			
	White		0.263	0.313	0.363			
			0.279	0.329	0.379			
Center Luminance of White	LC		800	1000			(4), (5)	
Contrast Ratio	CR		500	1000			(2), (5)	
Response Time	TR		-	13	18	-	(3)	
	TF		-	12	17			
White Variation	δW		70	80	-	%	(5), (6)	
Viewing Angle	Horizontal		80	89	-	Deg.	(1), (5)	
			80	89	-			
	Vertical		80	89	-			
			80	89	-			

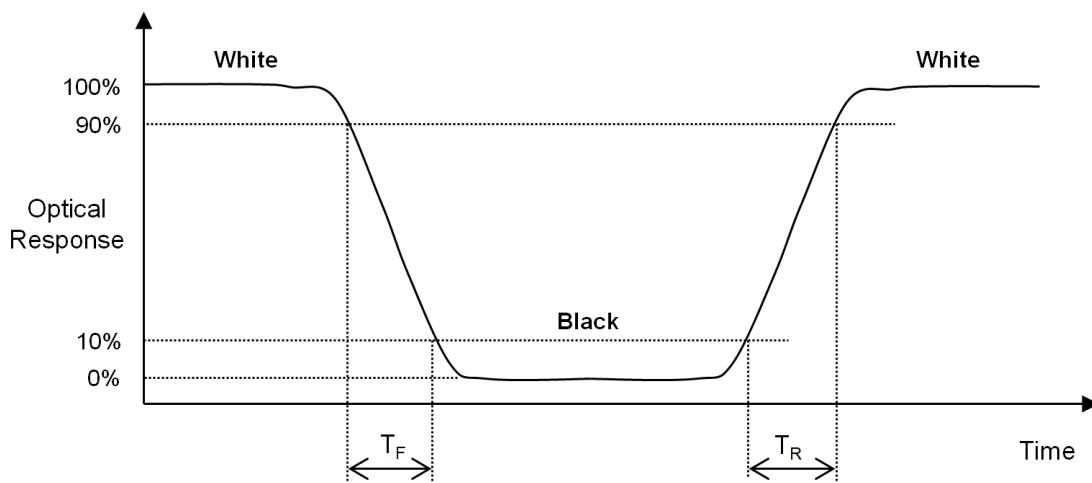

Definition :

Grayscale Maximum : Grayscale 255 (10 bits: grayscale 1023 ; 8 bits : grayscale 255 ; 6 bits: grayscale 63)

White : Luminance of Grayscale Maximum (All R,G,B)

Black : Luminance of grayscale 0 (All R,G,B)

Note(1) Definition of Viewing Angle (θ_x , θ_y):

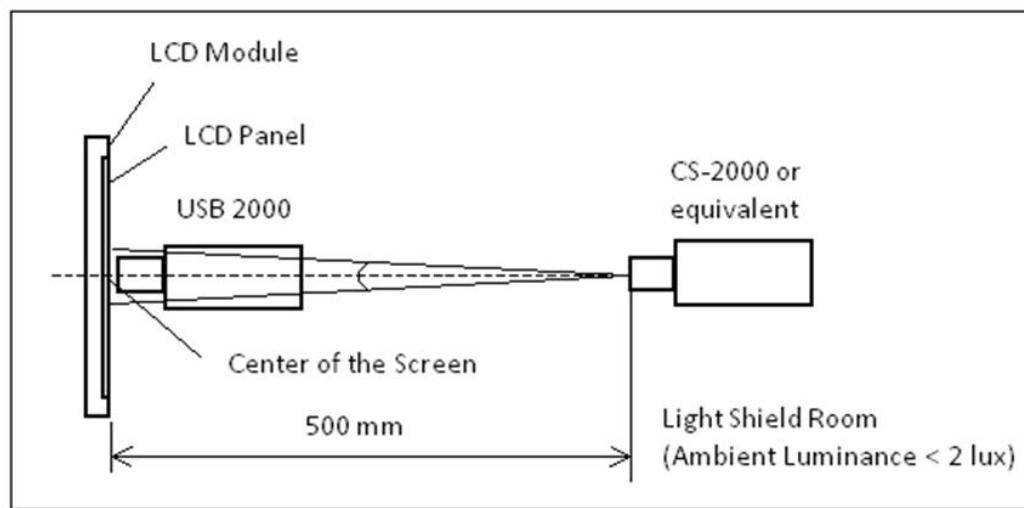


Note(2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression at center point.

Contrast Ratio (CR) = White / Black

Note(3) Definition of Response Time (T_R , T_F):

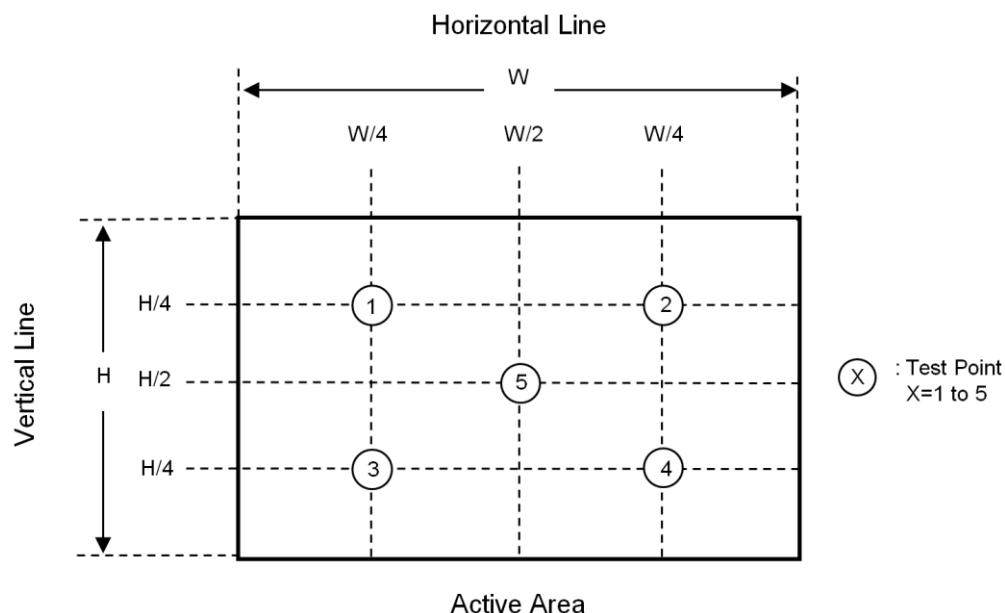


Note(4) Definition of Luminance of White (L_c):

Measure the luminance of White at center point.

Note(5) Measurement Setup:

The LCD module should be stabilized at given temperature to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 40 minutes in a windless room. The measurement placement of module should be in accordance with module drawing.



Note(6) Definition of White Variation (δW):

Measure the luminance of White at 5 points.

Luminance of White : $L(X)$, where X is from 1 to 5.

$$\delta W = \frac{\text{Minimum } [L(1) \text{ to } L(5)]}{\text{Maximum } [L(1) \text{ to } L(5)]} \times 100\%$$

8. RELIABILITY TEST CRITERIA

Test Item	Test Condition	Note
High Temperature Storage Test	80°C, 240 hours	(1), (2) (4), (5)
Low Temperature Storage Test	-30°C, 240 hours	
Thermal Shock Storage Test	-20°C, 0.5 hour \leftrightarrow 60°C, 0.5 hour; 100cycles, 1 hour/cycle)	
High Temperature Operation Test	80°C, 240 hours	
Low Temperature Operation Test	-30°C, 240 hours	
High Temperature & High Humidity Operation Test	60°C, RH 90%, 240 hours	
ESD Test (Operation)	150pF, 330Ω, 1 sec/cycle Condition 1 : panel contact, ± 8 KV Condition 2 : panel non-contact ± 15 KV	(1), (4)
Shock (Non-Operating)	50G, 11ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$ direction	(2), (3)
Vibration (Non-Operating)	1.5G, 10 ~ 300 Hz sine wave, 10 min/cycle, 3 cycles each X , Y , Z direction	

Note(1) There should be no condensation on the surface of panel during test ,

Note(2) Temperature of panel display surface area should be 80°C Max.

Note(3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Note(4) In the standard conditions, there is no function failure issue occurred. All the cosmetic specification is judged before reliability test.

Note(5) Before cosmetic and function test, the product must have enough recovery time, at least 24 hours at room temperature.

9. PACKAGING

9.1 PACKING SPECIFICATIONS

- (1) 13pcs LCD modules / 1 Box
- (2) Box dimensions: 465(L) X 362 (W) X 314 (H) mm
- (3) Weight: approximately 12.1 Kg (13 modules per box)

9.2 PACKING METHOD

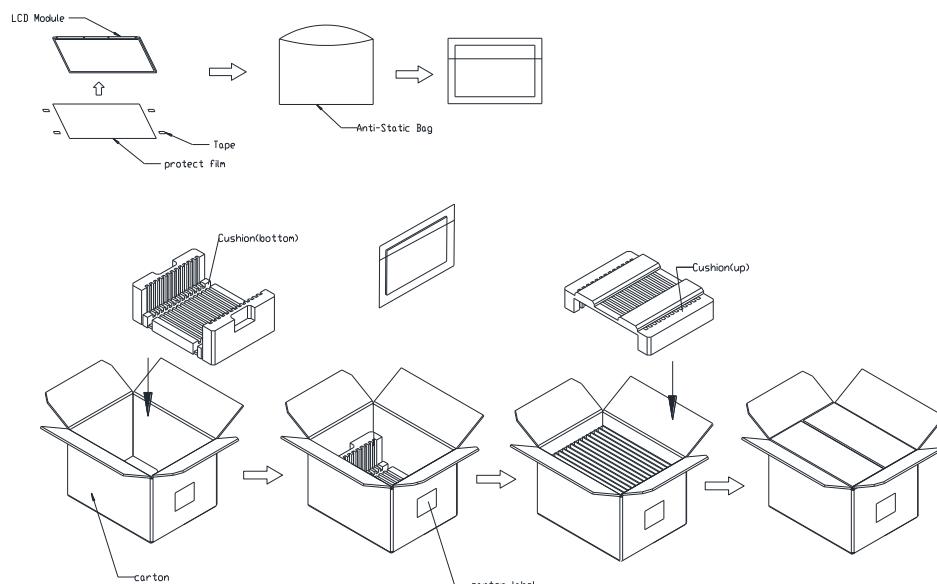


Figure. 9-1 Packing method

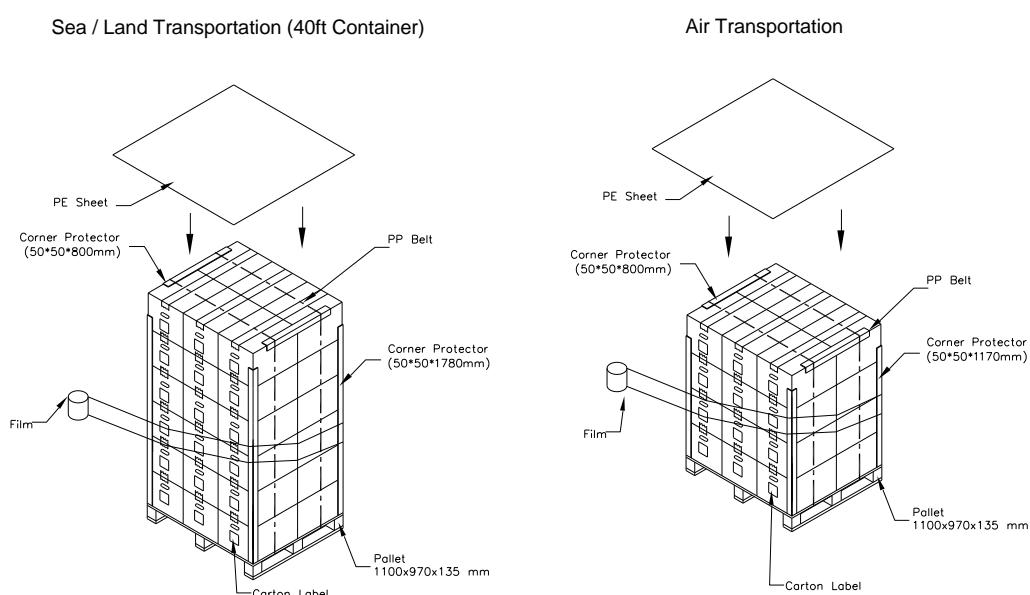


Figure. 9-2 Packing method

9.3 UN-PACKING METHOD

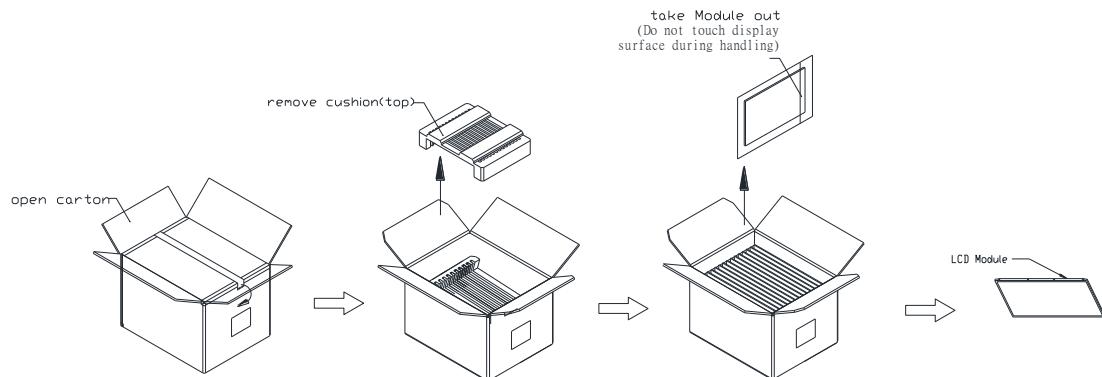
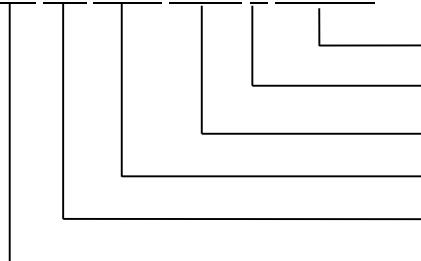



Figure. 9-3 UN-Packing method

10. DEFINITION OF LABELS

10.1 INX MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.



Note (1) Safety Compliance(UL logo) will open after C1 version.

(a) Model Name: G154ICE-LH2

(b) * * * * : Factory ID

(c) Serial ID: X X X X X X X Y M D X N N N N

Serial

INX Internal Use

Year, Month, Date

INX Internal Use

Revision

INX Internal Use

Serial ID includes the information as below:

(a) Manufactured Date: Year: 1~9, for 2021~2029

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I, O and U

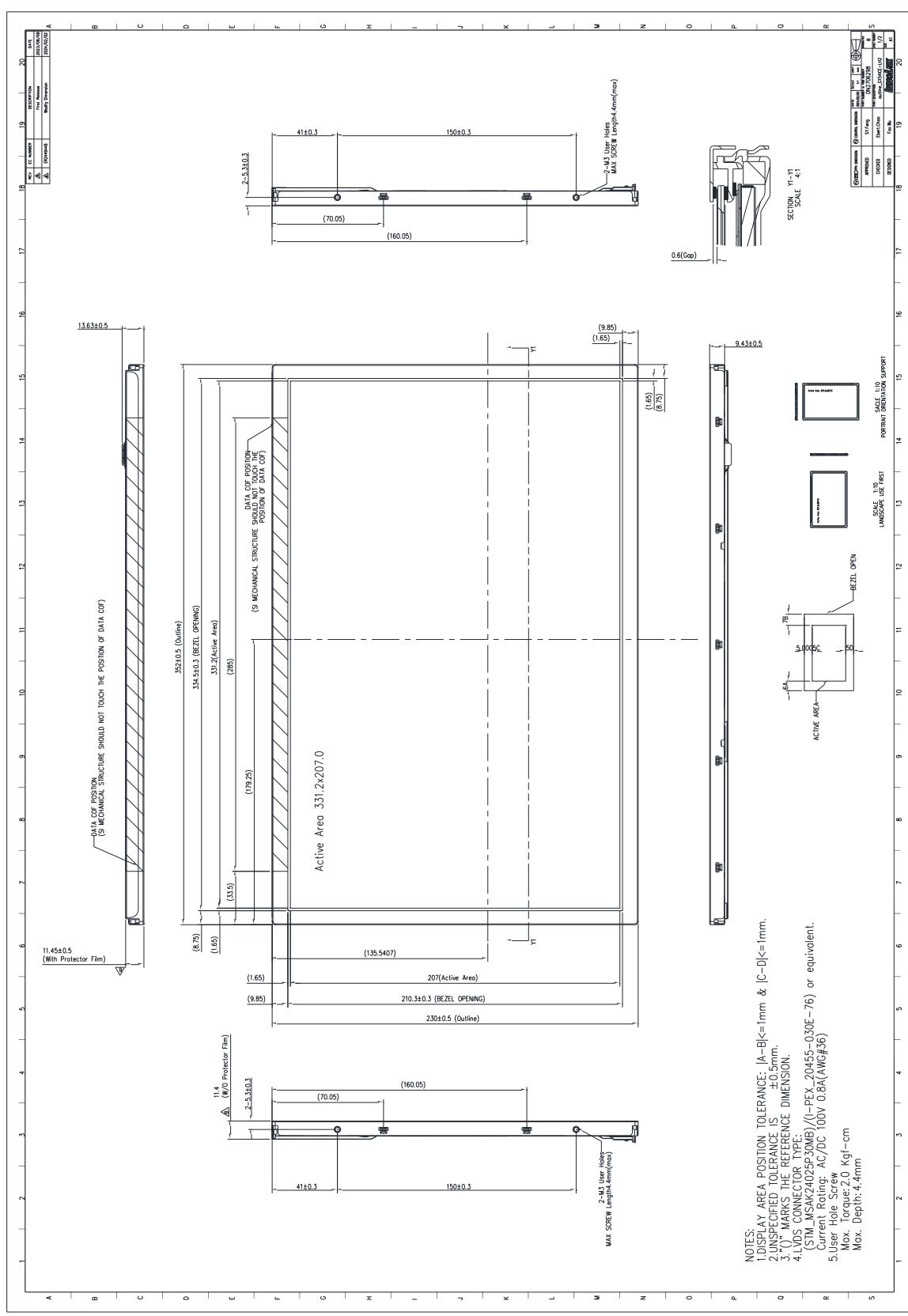
(b) Revision Code: cover all the change

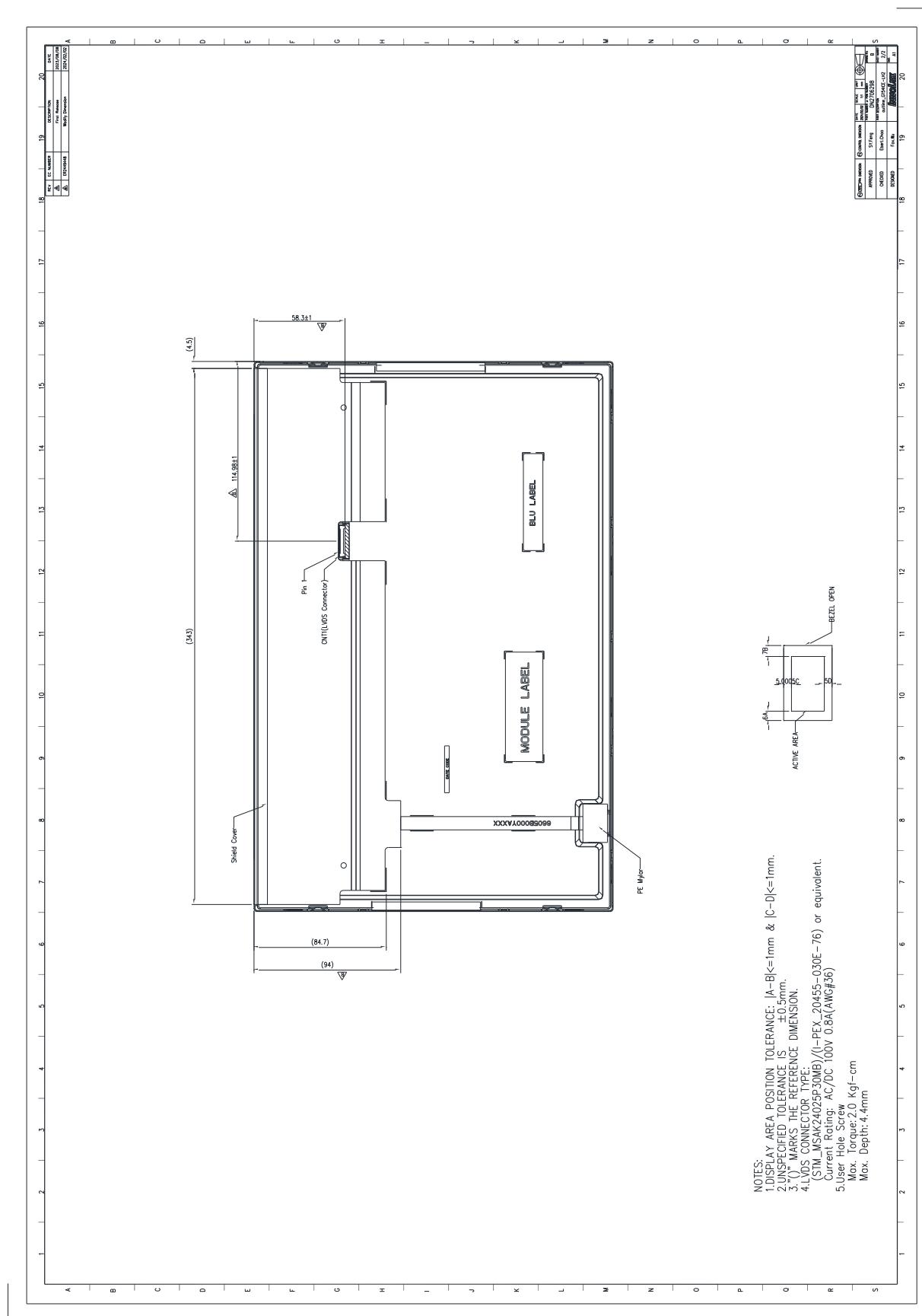
(c) Serial No.: Manufacturing sequence of product

11. PRECAUTIONS

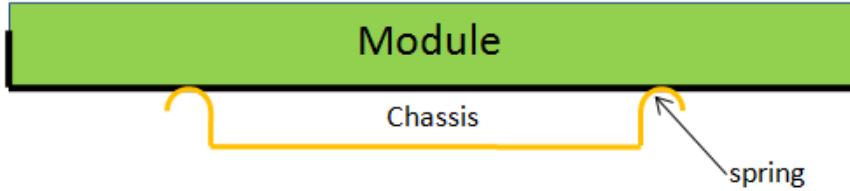
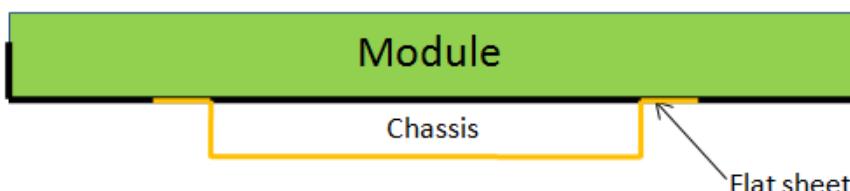
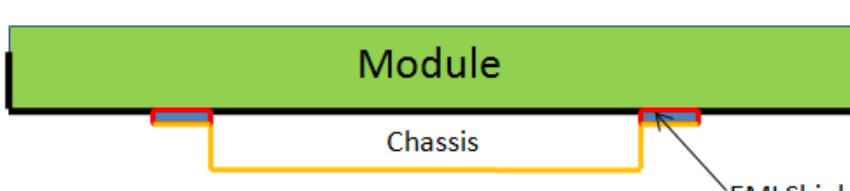
11.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) The module should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the module.
- (2) While assembling or installing modules, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer.
- (3) Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (4) Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched.
- (5) If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction.
- (6) Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time.
- (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap.
- (8) Protect the module from static electricity, it may cause damage to the C-MOS Gate Array IC.
- (9) Do not disassemble the module.
- (10) Do not pull or fold the lamp wire.
- (11) Pins of I/F connector should not be touched directly with bare hands.

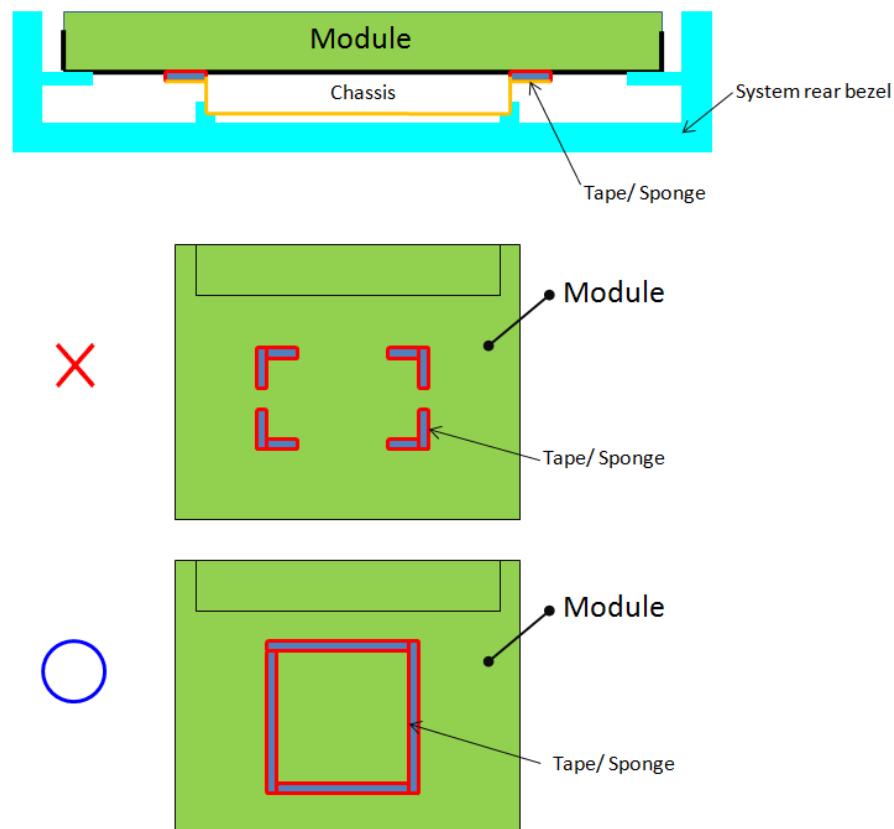

11.2 STORAGE PRECAUTIONS


- (1) When storing for a long time, the following precautions are necessary.
 - (a) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 30°C at humidity 50+-10%RH.
 - (b) The polarizer surface should not come in contact with any other object.
 - (c) It is recommended that they be stored in the container in which they were shipped.
 - (d) Storage condition is guaranteed under packing conditions.
 - (e) The phase transition of Liquid Crystal in the condition of the low or high storage temperature will be recovered when the LCD module returns to the normal condition
- (2) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (3) It is dangerous that moisture come into or contacted the LCD module, because the moisture may damage LCD module when it is operating.
- (4) It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly, and the starting voltage of lamp will be higher than the room temperature.
- (5) Storage must be in a fully packaged state (PET bag) and do not expose the sample (module)

11.3 OTHER PRECAUTIONS




- (1) Normal operating condition
 - (a) Display pattern: dynamic pattern (Real display)
 - (Note) Long-term static display can cause image sticking.
- (2) Operating usages to protect against image sticking due to long-term static display
 - (a) Static information display recommended to use with moving image.
- (3) Abnormal condition just means conditions except normal condition.

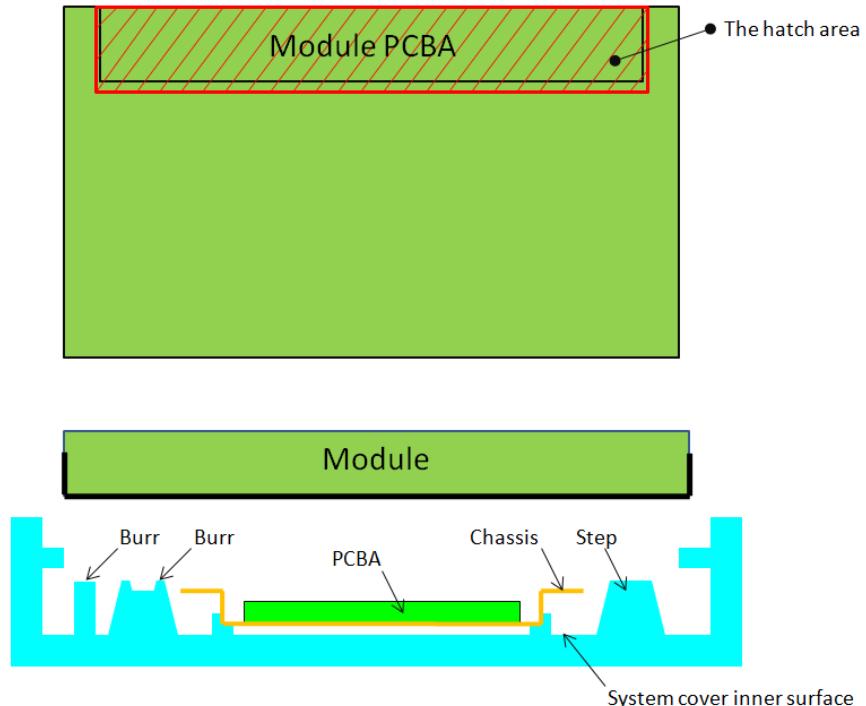
12. MECHANICAL CHARACTERISTICS



Appendix. SYSTEM COVER DESIGN NOTICE

1	Set Chassis and IA Module touching Mode
	<p>Module</p> <p>Chassis</p> <p>spring</p>
	<p>Module</p> <p>Chassis</p> <p>Flat sheetmetal</p>
	<p>Module</p> <p>Chassis</p> <p>EMI Shielding Gasket (Tape/ Sponge)</p>
Definition	<p>a. To prevent from abnormal display & white spot after mechanical test, it is not recommended to use spring type chassis.</p> <p>b. We suggest the contact mode between Chassis and Module rear cover is Tape/Sponge, second is Flat sheet metal type chassis.</p>

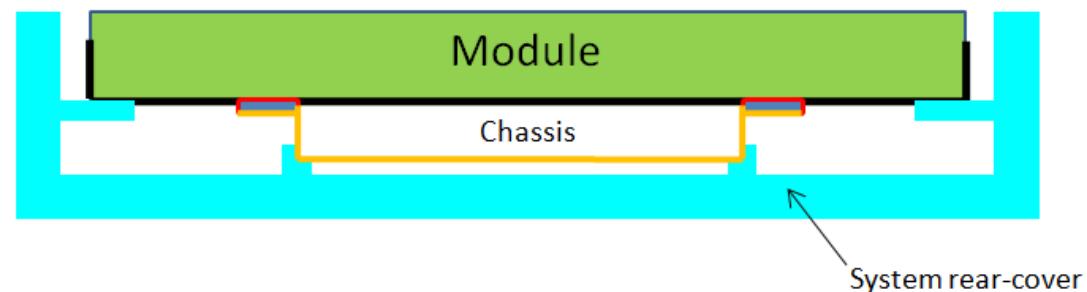
2


Tape/Sponge design on system inner surface

Definition	<p>a. To prevent from abnormal display & white spot after mechanical test, we suggest using Tape/Sponge as medium between chassis and Module rear cover could reduce the occurrence of white spot.</p> <p>b. When using the Tape/Sponge, we suggest it be lay over between set chassis and Module rear cover. It is not recommended to add Tape/Sponge in separate location. Since each Tape/Sponge may act as pressure concentration location.</p>
------------	---

3

System inner surface examination

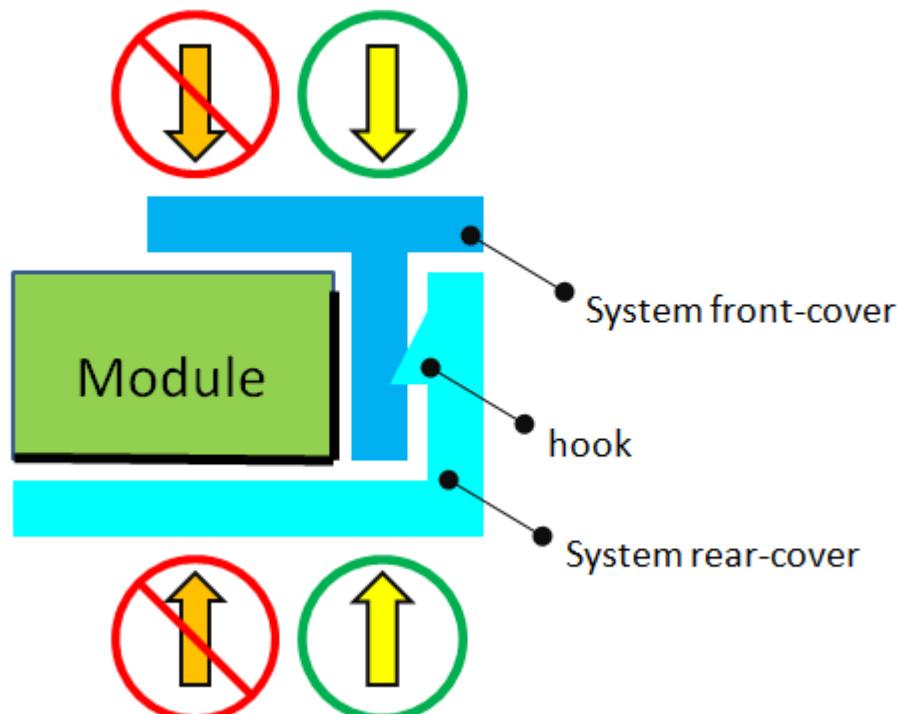


Definition

- a. The hatch area on Module PCBA should keep at least 1mm gap(X,Y,Z direction) to any structure with system cover inner surface.
- b. Burr, Step, PCB protrusion may cause stress concentration. White spot may occur during reliability test.

4

Material used for system rear-cover

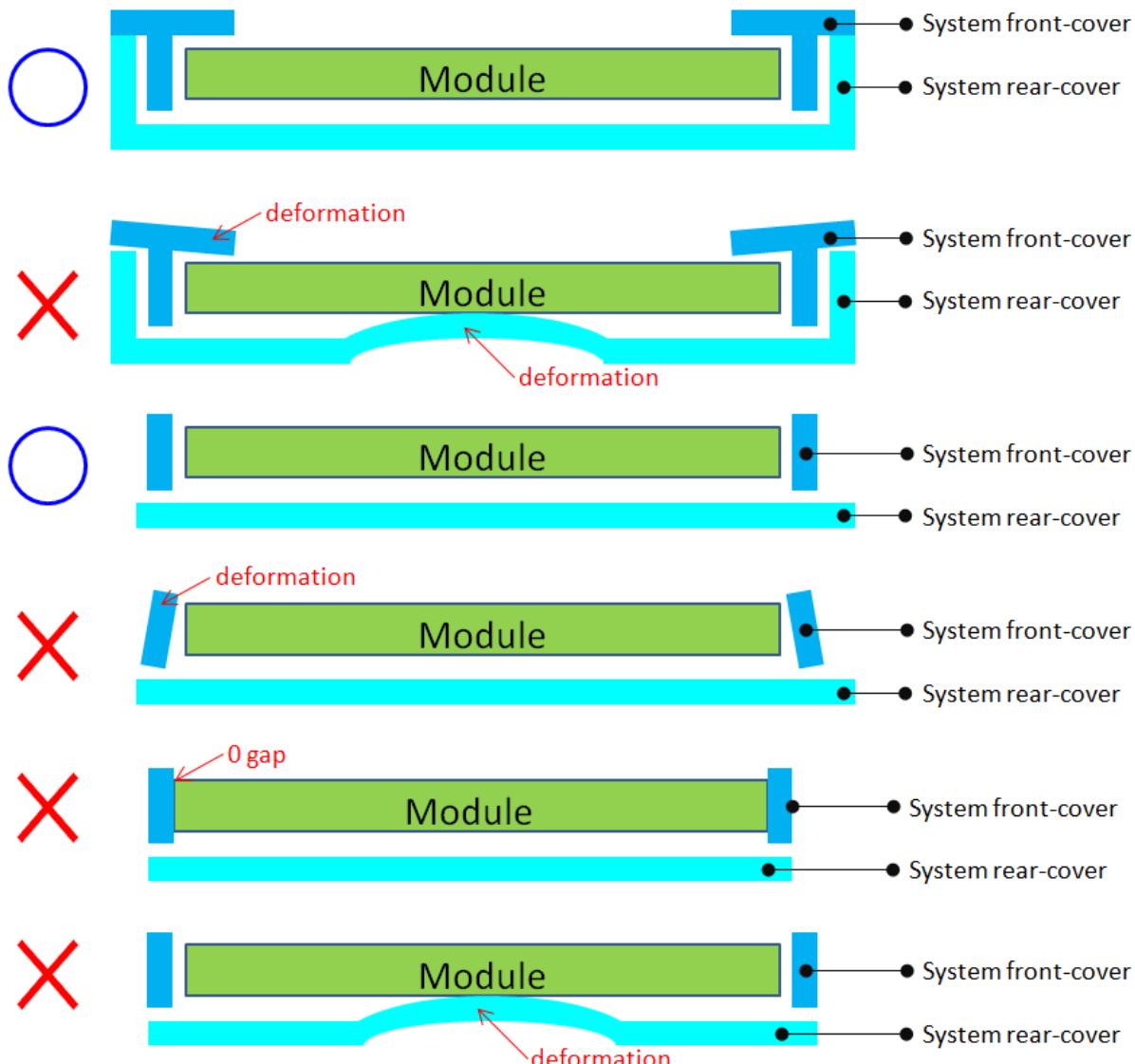


Definition

System rear-cover material with high rigidity is needed to resist deformation during scuffing test, hinge test, pogo test or backpack test. Abnormal display, white spot, pooling issue may occur if low rigidity material is used. Pooling issue may occur because screw's boss position for module's bracket are deformed open-close test. Solid structure design of system rear-cover may also influence the rigidity of system rear-cover. The deformation of system rear-cover should not caused interference.

5

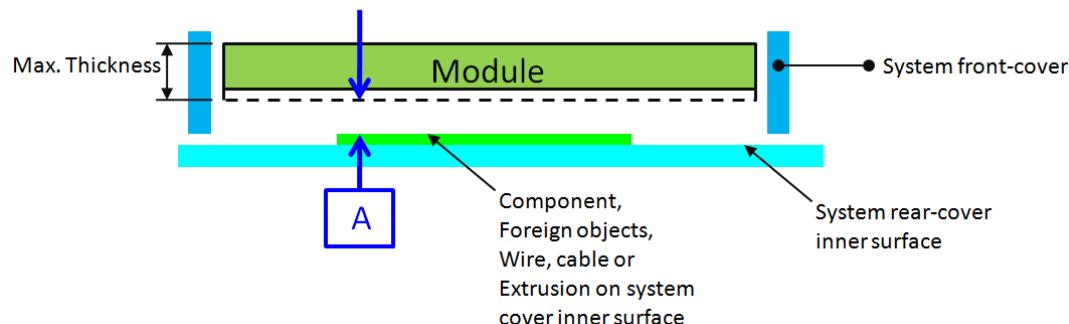
Assembly SOP examination for system front-cover with hook structure



Definition

To prevent panel crack during system front-cover assembly process with hook structure, it is not recommended to press panel or any location that relate directly to the panel.

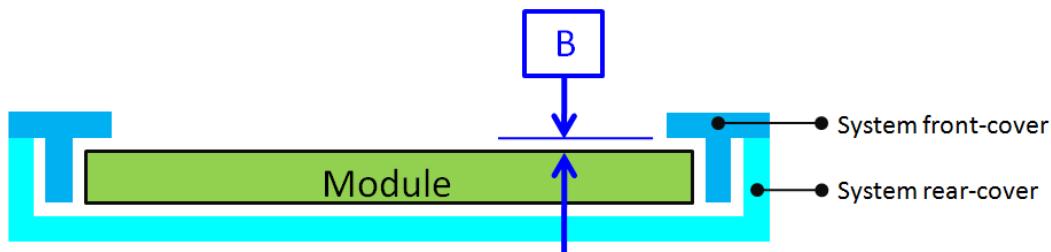
6


Permanent deformation of system cover after reliability test

Definition	<p>System cover including front cover and rear cover may deform during reliability test. Permanent deformation of system front cover and rear cover after reliability test should not interfere with panel. Because it may cause issue such as pooling, abnormal display, white spot and also cell creak.</p> <p>Note: If the interference cannot be avoided, please feel free to contract INX FAE Engineer for collaboration design. We can help to verify and pass risk assessment for customer reference.</p>
------------	--

7

Design gap A between panel & any components on system rear-cover


Definition

System cover including front cover and rear cover may deform during reliability test. Permanent deformation of system front cover and rear cover after reliability test should not interfere with panel. Because it may cause issue such as pooling, abnormal display, white spot and also cell creak.

Note: If the interference cannot be avoided, please feel free to contract INX FAE Engineer for collaboration design. We can help to verify and pass risk assessment for customer reference.

8

Design gap B between system front-cover & panel surface

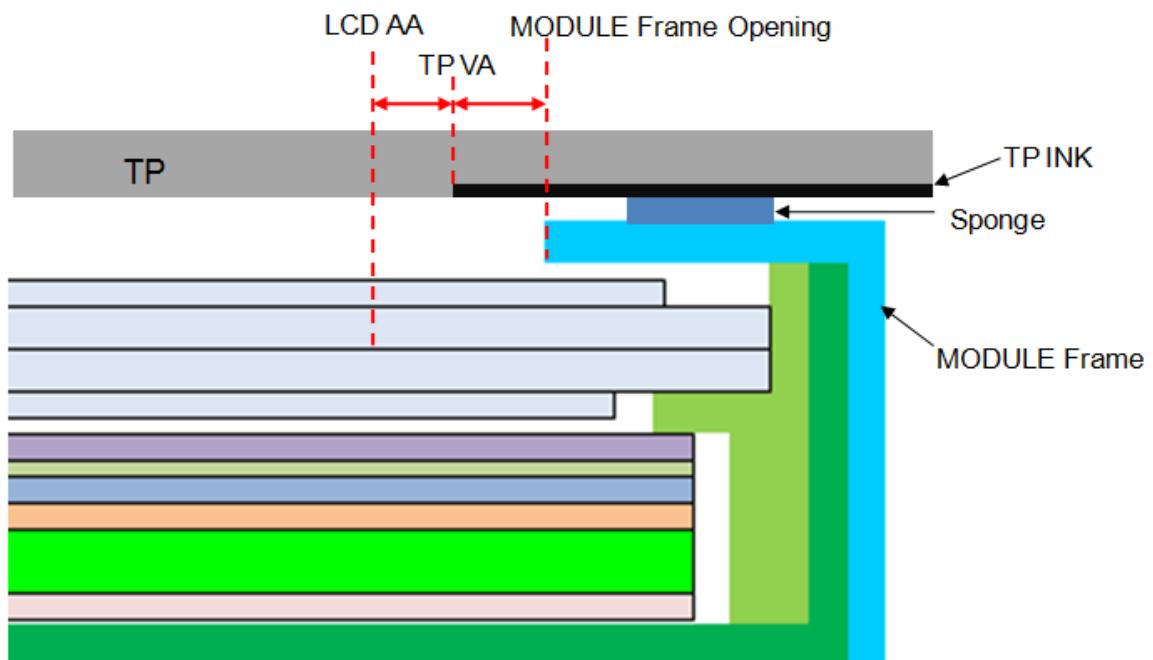
Definition

Gap between system front-cover & panel surface is needed to prevent pooling or glass broken. Zero gap or interference such as burr and warpage from mold frame may cause pooling issue near system front-cover opening edge. This phenomenon is obvious during swing test, hinge test, knock test or during pooling inspection procedure.

To remain sufficient gap, design with system rib higher than maximum panel thickness is recommended.

Note: If the interference cannot be avoided, please feel free to contract INX FAE Engineer for collaboration design. We can help to verify and pass risk assessment for customer reference.

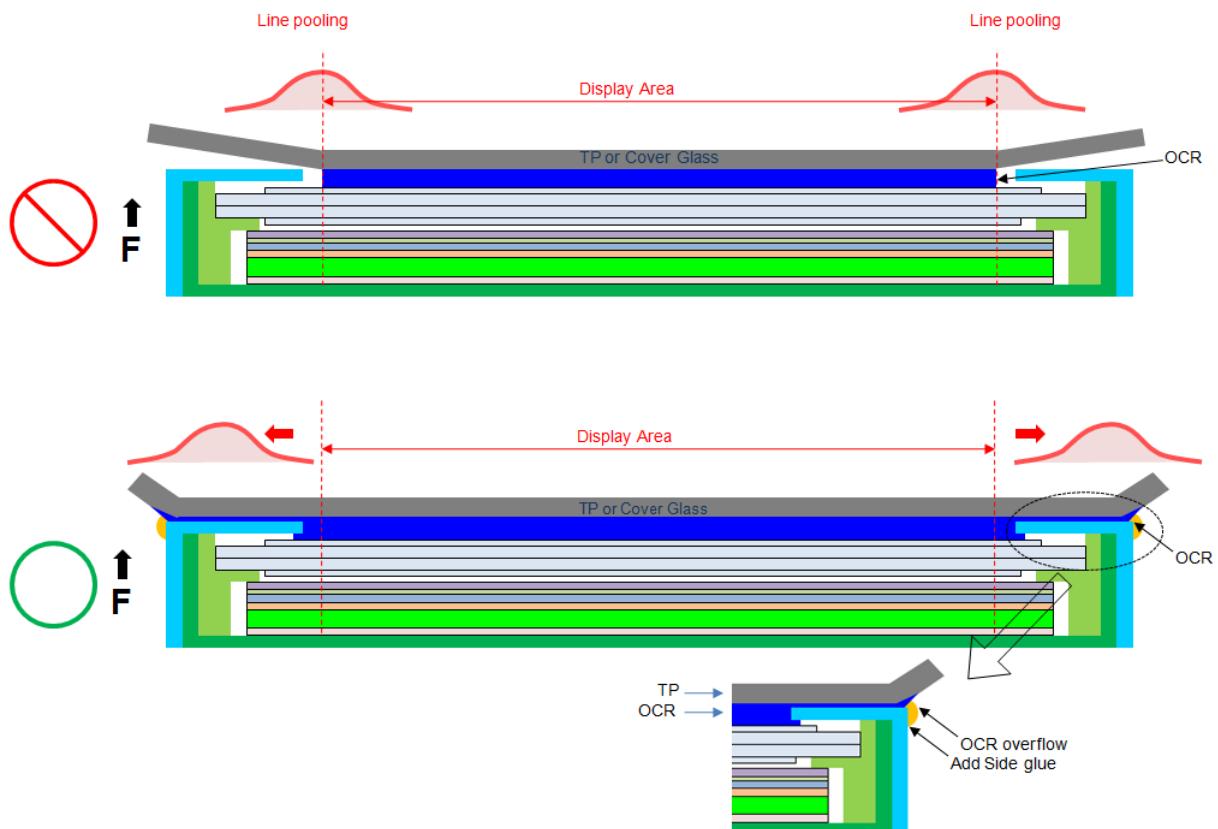
9


Design gap C between panel & system front-cover or protrusions

Definition	<p>Gap between panel & system front-cover or protrusions is needed to prevent shock test failure. Because system front-cover or protrusions with small gap may hit panel during the test. Issue such as cell crack, abnormal display may occur.</p> <p>The gap should be large enough to absorb the maximum displacement during the test.</p> <p>Note: If the interference cannot be avoided, please feel free to contract INX FAE Engineer for collaboration design. We can help to verify and pass risk assessment for customer reference.</p>
------------	--

10

Design distance between TP AA to LCD AA



Definition

TP VA should avoid TP ink area covering LCD AA or causing the module frame to be exposed.

11

Use OCR Lamination

Definition

- 1.OCR glue as possible beyond module, in order to avoid Line Pooling
- 2.Add side glue to avoid Line Pooling